A+B尝试代码快捷键点这里!!!!!!
在各位大佬的建议下,我又写了这个帖子hhh……
前方高能!!!警告!!!
本文长度恐怖!比上次还恐怖!请各位大佬蒟蒻们小心!
建议慢慢食用
大佬们当然不用担心啦~
注意!
这里只会放出AC的代码~
小声BB:本文制作不易,大佬们留个赞
来啦来啦~
算法一、DFS一号
#include <bits/stdc++.h>
using namespace std;
int n = 2, a[5], s;
int dfs(int x, int sum) {
if (x > n) return sum;
int i = dfs(x + 1, sum);
int j = dfs(x + 1, sum + a[x]);
if (i == s) return i;
if (j == s) return j;
return -1;
}
int main() {
for (int i = 1;i <= n; i++) scanf("%d", &a[i]), s += a[i];
cout << dfs(1, 0) << endl;
return 0;
}
算法二、DFS二号
#include <bits/stdc++.h>
using namespace std;
int a, b;
int dfs(int x) {
if (x <= 5) return x;
return dfs(x / 2) + dfs(x - x / 2);
}
int main() {
scanf("%d%d", &a, &b);
printf("%d\n", dfs(a) + dfs(b));
return 0;
}
算法三、BFS
#include <bits/stdc++.h>
using namespace std;
int n = 2, a[5], s;
queue<int> q;
void bfs() {
q.push(0);
int c = 0;
while (q.size()) {
c++;
int f = q.front(); q.pop();
if (f == s) {printf("%d\n", f); exit(0);}
q.push(f + a[c]);
q.push(f);
}
}
int main() {
for (int i = 1;i <= n; i++) scanf("%d", &a[i]), s += a[i];
bfs();
return 0;
}
算法四、直接算咯
#include <bits/stdc++.h>
using namespace std;
int a, b;
int main() {
scanf("%d%d", &a, &b);
printf("%d\n", a + b);
return 0;
}
算法五、二分
#include <bits/stdc++.h>
using namespace std;
int a, b;
int main() {
scanf("%d%d", &a, &b);
int l = 0, r = 200000000;
while (l < r) {
int mid = l + r >> 1;
if (mid == a + b) {printf("%d\n", mid); return 0;}
if (mid < a + b) l = mid + 1;
if (mid > a + b) r = mid - 1;
}
cout << l << endl;
return 0;
}
算法六、稍微有点暴力的枚举
但是还是$1892ms$卡过了欸
#include <bits/stdc++.h>
using namespace std;
int a, b;
int main() {
scanf("%d%d", &a, &b);
for (int i = 0;i <= 200000000; i++) if (a + b == i) {printf("%d\n", i); break;}
return 0;
}
算法七、最短路之dijkstra
思路:定义节点1到节点2路径长度为a,节点2到节点3路径长度为b
则答案为节点1到节点3的最短路(也就是$a+b$)
#include <bits/stdc++.h>
using namespace std;
int w[5][5], d[5], v[5];
int n = 3;
void dijkstra() {
memset(d, 0x3f, sizeof d);
memset(v, 0, sizeof v);
d[1] = 0;
for (int i = 1;i < n; i++) {
int x = 0;
for (int j = 1;j <= n; j++)
if (!v[j] && (x == 0 || d[j] < d[x])) x = j;
v[x] = 1;
for (int y = 1;y <= n; y++)
d[y] = min(d[y], d[x] + w[x][y]);
}
}
int main() {
int a, b; scanf("%d%d", &a, &b);
memset(w, 0x3f, sizeof w);
w[1][2] = a; w[2][3] = b;
dijkstra();
printf("%d\n", d[3]);
return 0;
}
算法八、最短路之SPFA
思路同上
#include <bits/stdc++.h>
using namespace std;
int a, b, n = 3;
int w[5][5], d[5], v[5];
queue<int> q;
void spfa() {
memset(d, 0x3f, sizeof d);
memset(v, 0, sizeof v);
d[1] = 0, v[1] = 1;
q.push(1);
while (q.size()) {
int x = q.front(); q.pop();
v[x] = 0;
for (int i = 1;i <= n; i++) {
// if (w[x][i] == 0x3f) continue;
if (d[i] > d[x] + w[x][i]) {
d[i] = d[x] + w[x][i];
if (!v[i]) q.push(i), v[i] = 1;
}
}
}
}
int main() {
scanf("%d%d", &a, &b);
memset(w, 0x3f, sizeof w);
w[1][2] = a; w[2][3] = b;
spfa();
printf("%d\n", d[3]);
return 0;
}
算法九、最短路之Floyd
思路同上
#include <bits/stdc++.h>
using namespace std;
int d[5][5], n = 3;
int main() {
int a, b; scanf("%d%d", &a, &b);
memset(d, 0x3f, sizeof d);
d[1][2] = a; d[2][3] = b;
for (int k = 1;k <= n; k++)
for (int i = 1;i <= n; i++)
for (int j = 1;j <= n; j++)
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
printf("%d\n", d[1][3]);
return 0;
}
算法十、高精
#include<bits/stdc++.h>
using namespace std;
string a0, b0;
int a[1005], b[1005];
int main(){
cin >> a0 >> b0;
int l1 = a0.size(), l2 = b0.size();
for (int i = 0;i < l1; i++) a[l1 - i] = a0[i] - 48;
for (int i = 0;i < l2; i++) b[l2 - i] = b0[i] - 48;
l1 = max(l1, l2);
for (int i = 1;i <= l1; i++) {
a[i] += b[i];
if (a[i] > 9) a[i + 1] += 1, a[i] %= 10;
}
if (a[max(l1, l2) + 1] > 0) l1++;
for (int i = l1;i >= 1; i--) printf("%d", a[i]);
return 0;
}
算法十一、最小生成树之kruskal
思路其实和最短路的一样,只是改成用最小生成树的方法求罢了
#include <bits/stdc++.h>
using namespace std;
struct rec {
int x, y, z;
} edge[5];
int fa[5], m = 2, ans = 0;
int get(int x) {
if (x == fa[x]) return x;
return fa[x] = get(fa[x]);
}
int cmp(rec a, rec b) { return a.z < b.z; }
int main() {
int a, b; scanf("%d%d", &a, &b);
edge[1] = (rec){1, 2, a};
edge[2] = (rec){2, 3, b};
for (int i = 1;i <= m + 1; i++) fa[i] = i;
sort(edge + 1, edge + 1 + m, cmp);
for (int i = 1;i <= m; i++) {
int x = get(edge[i].x);
int y = get(edge[i].y);
if (x == y) continue;
fa[x] = y;
ans += edge[i].z;
}
printf("%d\n", ans);
return 0;
}
算法十二、最小生成树之prim
思路同上
#include <bits/stdc++.h>
using namespace std;
int w[5][5], d[5], n = 3, ans, v[5];
void prim() {
memset(d, 0x3f, sizeof d);
memset(v, 0, sizeof v);
d[1] = 0;
for (int i = 1;i < n; i++) {
int x = 0;
for (int j = 1;j <= n; j++)
if (!v[j] && (x == 0 || d[j] < d[x])) x = j;
v[x] = 1;
for (int y = 1;y <= n; y++)
if (!v[y]) d[y] = min(d[y], w[x][y]);
}
}
int main() {
int a, b; scanf("%d%d", &a, &b);
memset(w, 0x3f, sizeof w);
w[1][2] = a; w[2][3] = b;
prim();
int ans = 0;
for (int i = 2;i <= n; i++) ans += d[i];
printf("%d\n", ans);
return 0;
}
算法十三、前缀和
#include <bits/stdc++.h>
using namespace std;
int a[5], s[5];
int main() {
for (int i = 1;i <= 2; i++) scanf("%d", &a[i]), s[i] += a[i] + s[i - 1];
printf("%d\n", s[2]);
return 0;
}
算法十四、后缀和
#include <bits/stdc++.h>
using namespace std;
int a[5], s[5];
int main() {
for (int i = 2;i >= 1; i--) scanf("%d", &a[i]), s[i] += a[i] + s[i + 1];
printf("%d\n", s[1]);
return 0;
}
算法十五、位运算
#include <bits/stdc++.h>
using namespace std;
int add(int a, int b) {
if (b == 0) return a;
return add(a ^ b, (a & b) << 1);
}
int main() {
int a, b; scanf("%d%d", &a, &b);
printf("%d\n", add(a, b));
return 0;
}
算法十六、树的直径——BFS
emmm……思路继续和最短路的一样。。。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
int head[maxn * 2],edge[maxn * 2],Next[maxn * 2],ver[maxn * 2];
int vis[maxn], dist[maxn];
int n = 3, p, q, d;
int tot = 0;
int maxd = 0;
void add(int u,int v,int w) {
ver[ ++ tot] = v,edge[tot] = w;
Next[tot] = head[u],head[u] = tot;
}
int BFS(int u) {
queue<int>Q;
while(!Q.empty()) Q.pop();
memset(vis, 0, sizeof vis);
memset(dist, 0, sizeof dist);
Q.push(u);
int x, max_num = 0;
while(!Q.empty()) {
x = Q.front();
Q.pop();
vis[x] = 1;
for(int i = head[x]; i ; i = Next[i]) {
int y = ver[i];
if(vis[y]) continue;
vis[y] = 1;
dist[y] = dist[x] + edge[i];
if(dist[y] > maxd) {
maxd = dist[y];
max_num = y;
}
Q.push(y);
}
}
return max_num;
}
int main(void) {
int a, b; scanf("%d%d", &a, &b);
add(1, 2, a); add(2, 1, a);
add(2, 3, b); add(3, 2, b);
BFS(BFS(1));
int ans = 0;
for (int i = 1;i <= n; i++) ans = max(ans, dist[i]);
printf("%d\n", ans);
return 0;
}
算法十七、树的直径——DFS
思路同上
#include<bits/stdc++.h>
#define maxn 100000
using namespace std;
struct node {
int u, v, w, nex;
} edge[2 * maxn + 10];
int n = 3, d[maxn + 10], head[maxn + 10], f_num, cnt = 0, ans;
inline void add(int x,int y,int z) {
edge[++cnt].u = x;
edge[cnt].v = y;
edge[cnt].w = z;
edge[cnt].nex = head[x];
head[x] = cnt;
}
inline void dfs(int x, int fa) {
if(ans < d[x]) {
ans = d[x];
f_num = x;
}
for (int i = head[x]; i != -1; i = edge[i].nex) {
int j = edge[i].v;
if (j == fa)continue;
d[j] = d[x] + edge[i].w;
dfs(j, x);
}
}
int main() {
memset(head, -1, sizeof(head));
int a, b; scanf("%d%d", &a, &b);
add(1, 2, a); add(2, 1, a);
add(2, 3, b); add(3, 2, b);
dfs(1, 0);
ans = 0;
d[f_num] = 0;
dfs(f_num, 0);
for (int i = 1;i <= n; i++) ans = max(ans, d[i]);
printf("%d", ans);
return 0;
}
算法十八、树的直径——树形DP
还是一样咯
#include <bits/stdc++.h>
using namespace std;
int f[5], n = 3, cnt, h[5], ans, dis[5];
struct edge {
int to, next, vi;
} e[5];
void add(int u, int v, int w) {
e[cnt].to= v;
e[cnt].vi = w;
e[cnt].next = h[u];
h[u] = cnt++;
}
void dp(int u, int fa) {
for (int i = h[u]; ~i; i = e[i].next) {
int v = e[i].to;
if (v == fa) continue;
dp(v, u);
ans = max(ans, dis[v] + dis[u] + e[i].vi);
dis[u] = max(dis[u], dis[v] + e[i].vi);
}
}
int main() {
memset(h, -1, sizeof h);
int a, b; scanf("%d%d", &a, &b);
add(1, 2, a); add(2, 1, a);
add(2, 3, b); add(3, 2, b);
dp(1, 0);
printf("%d\n", ans);
return 0;
}
算法十九、网络流
从别的大佬那边搞过来的,但是一点都看不懂┭┮﹏┭┮
#include<bits/stdc++.h>
using namespace std;
#define set(x) Set(x)
#define REP(i,j,k) for (int i=(j),_end_=(k);i<=_end_;++i)
#define DREP(i,j,k) for (int i=(j),_start_=(k);i>=_start_;--i)
#define mp make_pair
#define x first
#define y second
#define pb push_back
template<typename T> inline bool chkmin(T &a,const T &b){ return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a,const T &b){ return a < b ? a = b, 1 : 0; }
typedef long long LL;
typedef pair<int,int> node;
const int dmax = 1010, oo = 0x3f3f3f3f;
int n, m;
int a[dmax][dmax] , ans;
int d[dmax], e[dmax];
priority_queue <node> q;
inline bool operator >(node a,node b){ return a.y>b.y; }
bool p[dmax];
void Set(int x){ p[x] = 1; }
void unset(int x){ p[x] = 0; }
bool check(int x){ return x != 1 && x != n && !p[x] && e[x] > 0; }
void preflow(){
e[1] = oo;
d[1] = n - 1;
q.push(mp(1, n - 1));
set(1);
while (!q.empty()) {
bool flag = 1;
int k = q.top().x;
q.pop(), unset(k);
DREP(i, n, 1)
if ((d[k] == d[i] + 1 || k == 1) && a[k][i] > 0){
flag = 0;
int t = min(a[k][i], e[k]);
e[k] -= t;
a[k][i] -= t;
e[i] += t;
a[i][k] += t;
if (check(i)) {
q.push(mp(i, d[i]));
set(i);
}
if (e[k] == 0) break;
}
if (flag) {
d[k] = oo;
REP(i, 1, n)
if (a[k][i] > 0) chkmin(d[k], d[i] + 1);
}
if (check(k)) {
q.push(mp(k, d[k]));
set(k);
}
}
ans = e[n];
}
int main() {
n = 2, m = 2;
int x, y;
scanf("%d%d", &x, &y);
a[1][2] += x + y;
preflow();
printf("%d\n", ans);
return 0;
}
算法二十、线段树
转化为区间求和问题
#include <bits/stdc++.h>
#define l(x) tree[x].l
#define r(x) tree[x].r
#define sum(x) tree[x].sum
#define add(x) tree[x].add
using namespace std;
struct SegmentTree {
int l, r; //区间左右端点
long long sum, add; //sum 区间和 add 延迟标记
} tree[400010];
int a[100010], n = 1, m = 2;
void build (int p, int l, int r) {
l(p) = l, r(p) = r;
if(l == r) {sum(p) = a[l]; return;}
int mid = l + r >> 1;
build(p * 2, l, mid);
build(p * 2 + 1, mid + 1, r);
sum(p) = sum(p * 2) + sum(p * 2 + 1);
}
void spread(int p) {
if(add(p)) { //节点p有标记
sum(p * 2) += add(p) * (r(p * 2) - l(p * 2) + 1); //更新左子节点信息
sum(p * 2 + 1) += add(p) * (r(p * 2 + 1) - l(p * 2 + 1) + 1); //更新右子节点
add(p * 2) += add(p); //给左子节点打延迟标记
add(p * 2 + 1) += add(p); //给右子节点打延迟标记
add(p) = 0; //清除p的标记
}
}
void change(int p, int l, int r, int d) {
if(l <= l(p) && r >= r(p)) { //完全覆盖
sum(p) += (long long) d * (r(p) - l(p) + 1); //更新节点信息
add(p) += d; //给节点打延迟标记
return;
}
spread(p); //下传延迟标记
int mid = l(p) + r(p) >> 1;
if(l <= mid) change(p * 2, l, r, d);
if(r > mid) change(p * 2 + 1, l, r, d);
sum(p) = sum(p * 2) + sum(p * 2 + 1);
}
long long ask(int p, int l, int r) {
if(l <= l(p) && r >= r(p)) return sum(p);
spread(p);
int mid = l(p) + r(p) >> 1;
long long val = 0;
if(l <= mid) val += ask(p * 2, l, r);
if(r > mid) val += ask(p * 2 + 1, l, r);
return val;
}
int main() {
a[1] = 0;
build(1, 1, n);
while(m--) {
int d = 0;
scanf("%d", &d);
change(1, 1, 1, d);
}
printf("%lld\n", ask(1, 1, 1));
return 0;
}
算法二十一、树状数组
思路一样,区间求和
#include<bits/stdc++.h>
using namespace std;
const int SIZE = 100010;
int a[SIZE], n = 1, m = 2;
long long c[2][SIZE], sum[SIZE];
long long ask(int k, int x) {
long long ans = 0;
for(; x ; x -= x & -x) ans += c[k][x];
return ans;
}
void add(int k,int x,int y) {
for(; x <= n; x += x & -x) c[k][x] += y;
}
int main() {
a[1] = 0;
while(m--) {
int d = 0;
scanf("%d", &d);
add(0, 1, d);
add(0, 2, -d);
add(1, 1, d);
add(1, 2, -2 * d);
}
long long ans = sum[1] + 2 * ask(0, 1) - ask(1, 1);
ans -= sum[0] + 1 * ask(0, 0) - ask(1, 0);
printf("%lld\n", ans);
return 0;
}
算法二十二、分块
思路一样,区间求和
#include<bits/stdc++.h>
using namespace std;
long long a[50000010], sum[50000010], add[50000010];
int L[50000010], R[50000010];
int pos[50000010];
int n = 1, m = 2, t;
void change(int l, int r, long long d) {
int p = pos[l], q = pos[r];
if (p == q) {
for (int i = l; i <= r; i++) a[i] += d;
sum[p] += d*(r - l + 1);
}
else {
for (int i = p + 1; i <= q - 1; i++) add[i] += d;
for (int i = l; i <= R[p]; i++) a[i] += d;
sum[p] += d*(R[p] - l + 1);
for (int i = L[q]; i <= r; i++) a[i] += d;
sum[q] += d*(r - L[q] + 1);
}
}
long long ask(int l, int r) {
int p = pos[l], q = pos[r];
long long ans = 0;
if (p == q) {
for (int i = l; i <= r; i++) ans += a[i];
ans += add[p] * (r - l + 1);
}
else {
for (int i = p + 1; i <= q - 1; i++)
ans += sum[i] + add[i] * (R[i] - L[i] + 1);
for (int i = l; i <= R[p]; i++) ans += a[i];
ans += add[p] * (R[p] - l + 1);
for (int i = L[q]; i <= r; i++) ans += a[i];
ans += add[q] * (r - L[q] + 1);
}
return ans;
}
int main() {
a[1] = 0;
t = sqrt(n*1.0);
for (int i = 1; i <= t; i++) {
L[i] = (i - 1)*sqrt(n*1.0) + 1;
R[i] = i*sqrt(n*1.0);
}
if (R[t] < n) t++, L[t] = R[t - 1] + 1, R[t] = n;
for (int i = 1; i <= t; i++)
for (int j = L[i]; j <= R[i]; j++) {
pos[j] = i;
sum[i] += a[j];
}
while (m--) {
int d;
scanf("%d", &d);
change(1, 1, d);
}
printf("%lld\n", ask(1, 1));
}
算法二十三、LCT
来自洛谷
#include<bits/stdc++.h>
using namespace std;
struct node
{
int data,rev,sum;
node *son[2],*pre;
bool judge();
bool isroot();
void pushdown();
void update();
void setson(node *child,int lr);
}lct[233];
int top,a,b;
node *getnew(int x)
{
node *now=lct+ ++top;
now->data=x;
now->pre=now->son[1]=now->son[0]=lct;
now->sum=0;
now->rev=0;
return now;
}
bool node::judge()
{
return pre->son[1]==this;
}
bool node::isroot()
{
if(pre==lct)return true;
return !(pre->son[1]==this||pre->son[0]==this);
}
void node::pushdown()
{
if(this==lct||!rev)return;
swap(son[0],son[1]);
son[0]->rev^=1;
son[1]->rev^=1;
rev=0;
}
void node::update()
{
sum=son[1]->sum+son[0]->sum+data;
}
void node::setson(node *child,int lr)
{
this->pushdown();
child->pre=this;
son[lr]=child;
this->update();
}
void rotate(node *now)
{
node *father=now->pre,*grandfa=father->pre;
if(!father->isroot()) grandfa->pushdown();
father->pushdown();
now->pushdown();
int lr=now->judge();
father->setson(now->son[lr^1],lr);
if(father->isroot()) now->pre=grandfa;
else grandfa->setson(now,father->judge());
now->setson(father,lr^1);
father->update();
now->update();
if(grandfa!=lct) grandfa->update();
}
void splay(node *now)
{
if(now->isroot())return;
for(; !now->isroot(); rotate(now))
if(!now->pre->isroot())
now->judge()==now->pre->judge()?rotate(now->pre):rotate(now);
}
node *access(node *now)
{
node *last=lct;
for(; now!=lct; last=now,now=now->pre) {
splay(now);
now->setson(last,1);
}
return last;
}
void changeroot(node *now)
{
access(now)->rev^=1;
splay(now);
}
void connect(node *x,node *y)
{
changeroot(x);
x->pre=y;
access(x);
}
void cut(node *x,node *y)
{
changeroot(x);
access(y);
splay(x);
x->pushdown();
x->son[1]=y->pre=lct;
x->update();
}
int query(node *x,node *y)
{
changeroot(x);
node *now=access(y);
return now->sum;
}
int main()
{
scanf("%d%d",&a,&b);
node *A=getnew(a);
node *B=getnew(b);
connect(A,B);
cut(A,B);
connect(A,B);
printf("%d",query(A,B));
return 0;
}
算法二十四、Splay
来自洛谷
#include <bits/stdc++.h>
#define ll long long
#define N 100000
using namespace std;
int sz[N], rev[N], tag[N], sum[N], ch[N][2], fa[N], val[N];
int n, m, rt, x;
void push_up(int x){
sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + 1;
sum[x] = sum[ch[x][1]] + sum[ch[x][0]] + val[x];
}
void push_down(int x){
if(rev[x]){
swap(ch[x][0], ch[x][1]);
if(ch[x][1]) rev[ch[x][1]] ^= 1;
if(ch[x][0]) rev[ch[x][0]] ^= 1;
rev[x] = 0;
}
if(tag[x]){
if(ch[x][1]) tag[ch[x][1]] += tag[x], sum[ch[x][1]] += tag[x];
if(ch[x][0]) tag[ch[x][0]] += tag[x], sum[ch[x][0]] += tag[x];
tag[x] = 0;
}
}
void rotate(int x, int &k){
int y = fa[x], z = fa[fa[x]];
int kind = ch[y][1] == x;
if(y == k) k = x;
else ch[z][ch[z][1]==y] = x;
fa[x] = z; fa[y] = x; fa[ch[x][!kind]] = y;
ch[y][kind] = ch[x][!kind]; ch[x][!kind] = y;
push_up(y); push_up(x);
}
void splay(int x, int &k){
while(x != k){
int y = fa[x], z = fa[fa[x]];
if(y != k) if(ch[y][1] == x ^ ch[z][1] == y) rotate(x, k);
else rotate(y, k);
rotate(x, k);
}
}
int kth(int x, int k){
push_down(x);
int r = sz[ch[x][0]]+1;
if(k == r) return x;
if(k < r) return kth(ch[x][0], k);
else return kth(ch[x][1], k-r);
}
void split(int l, int r){
int x = kth(rt, l), y = kth(rt, r+2);
splay(x, rt); splay(y, ch[rt][1]);
}
void rever(int l, int r){
split(l, r);
rev[ch[ch[rt][1]][0]] ^= 1;
}
void add(int l, int r, int v){
split(l, r);
tag[ch[ch[rt][1]][0]] += v;
val[ch[ch[rt][1]][0]] += v;
push_up(ch[ch[rt][1]][0]);
}
int build(int l, int r, int f){
if(l > r) return 0;
if(l == r){
fa[l] = f;
sz[l] = 1;
return l;
}
int mid = l + r >> 1;
ch[mid][0] = build(l, mid-1, mid);
ch[mid][1] = build(mid+1, r, mid);
fa[mid] = f;
push_up(mid);
return mid;
}
int asksum(int l, int r){
split(l, r);
return sum[ch[ch[rt][1]][0]];
}
int main(){
//总共两个数
n = 2;
rt = build(1, n+2, 0);//建树
for(int i = 1; i <= n; i++){
scanf("%d", &x);
add(i, i, x);//区间加
}
rever(1, n);//区间翻转
printf("%d\n", asksum(1, n));//区间求和
return 0;
}
算法二十五、LCA
来自洛谷
#include<cstdio> //头文件
#define NI 2
//从来不喜欢算log所以一般用常数 不知道算不算坏习惯 因为3个节点 所以log3(当然以2为底)上取整得2
struct edge
{
int to,next,data; //分别表示边的终点,下一条边的编号和边的权值
}e[30]; //邻接表,点少边少开30是为了浪啊
int v[10],d[10],lca[10][NI+1],f[10][NI+1],tot=0; //数组开到10依然为了浪
//数组还解释嘛,v表示第一条边在邻接表中的编号,d是深度,lca[x][i]表示x向上跳2^i的节点,f[x][i]表示x向上跳2^i的距离和
void build(int x,int y,int z) //建边
{
e[++tot].to=y; e[tot].data=z; e[tot].next=v[x]; v[x]=tot;
e[++tot].to=x; e[tot].data=z; e[tot].next=v[y]; v[y]=tot;
}
void dfs(int x) //递归建树
{
for(int i=1;i<=NI;i++) //懒,所以常数懒得优化
f[x][i]=f[x][i-1]+f[lca[x][i-1]][i-1],
lca[x][i]=lca[lca[x][i-1]][i-1]; //建树的同时进行预处理
for(int i=v[x];i;i=e[i].next) //遍历每个连接的点
{
int y=e[i].to;
if(lca[x][0]==y) continue;
lca[y][0]=x; //小技巧:lca[x][0]即为x的父亲~~(向上跳2^0=1不就是父节点嘛)
f[y][0]=e[i].data;
d[y]=d[x]+1;
dfs(y); //再以这个节点为根建子树【这里真的用得到嘛??】
}
}
int ask(int x,int y) //询问,也是关键
{
if(d[x]<d[y]) {int t=x;x=y;y=t;} //把x搞成深的点
int k=d[x]-d[y],ans=0;
for(int i=0;i<=NI;i++)
if(k&(1<<i)) //若能跳就把x跳一跳
ans+=f[x][i], //更新信息
x=lca[x][i];
for(int i=NI;i>=0;i--) //不知道能不能正着循环,好像倒着优,反正记得倒着就好了
if(lca[x][i]!=lca[y][i]) //如果x跳2^i和y跳2^j没跳到一起就让他们跳
ans+=f[x][i]+f[y][i],
x=lca[x][i],y=lca[y][i];
return ans+f[x][0]+f[y][0]; //跳到LCA上去(每步跳的时候都要更新信息,而且要在跳之前更新信息哦~)
}
int main()
{
int a,b;
scanf("%d%d",&a,&b);
build(1,2,a);
build(1,3,b); //分别建1 2、1 3之间的边
dfs(1); //以1为根建树
printf("%d",ask(2,3)); //求解2 3到它们的LCA的距离和并输出
}
算法二十六、字典树
来自洛谷
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
struct node{
int str[26];
int sum;
}s[1000];
char str1[100];
int t=0,tot=0,ss=0;
bool f1;
void built()
{
t=0;
for(int i=0;i<strlen(str1);i++)
{
if(str1[i]=='-'){
f1=true;continue;
}
if(!s[t].str[str1[i]-'0'])
s[t].str[str1[i]-'0']=++tot;
t=s[t].str[str1[i]-'0'];
s[t].sum=str1[i]-'0';
}
}
int query()
{
int t=0;int s1=0;
for(int i=0;i<strlen(str1);i++)
{
if(str1[i]=='-') continue;
if(!s[t].str[str1[i]-'0']) return s1;
t=s[t].str[str1[i]-'0'];
s1=s1*10+s[t].sum;
}
return s1;
}
int main()
{
for(int i=1;i<=2;i++)
{
f1=false;
scanf("%s",str1);
built();
if(f1)
ss-=query();
else ss+=query();
}
printf("%d",ss);
return 0;
}
嘿嘿洛谷的没有啦~
算法二十七、Bellman-Ford
思路和别的最短路解法一样~
#include <bits/stdc++.h>
using namespace std;
int dis[50], u[50], v[50], w[50], n, m;
void bellman(int start) {
for (int i = 1;i <= n; i++) dis[i] = 0x3f3f3f3f;
dis[start] = 0;
for (int i = 1;i < n; i++)
for (int j = 1;j <= m; j++)
if (dis[v[j]] > dis[u[j]] + w[j]) dis[v[j]] = dis[u[j]] + w[j];
}
int main() {
n = 3; m = 2;
for (int i = 1;i <= m; i++) cin >> w[i], u[i] = i, v[i] = i + 1;
bellman(1);
printf("%d\n", dis[3]);
return 0;
}
算法二十八、可耻的打表
#include <bits/stdc++.h>
using namespace std;
int a, b; int main() {
scanf("%d%d", &a, &b);
if (a == 3 && b == 4) printf("7");
if (a == 45 && b == 55) printf("100");
if (a == 123 && b == 321) printf("444");
if (a == 91086199 && b == 18700332) printf("109786531");
if (a == 42267194 && b == 60645282) printf("102912476");
if (a == 69274392 && b == 10635835) printf("79910227");
if (a == 5710219 && b == 85140568) printf("90850787");
if (a == 75601477 && b == 24005804) printf("99607281");
if (a == 70597795 && b == 90383234) printf("160981029");
if (a == 82574652 && b == 22252146) printf("104826798");
return 0; //hh,这个len没加上return 0,还是我加的……
}
算法二十九、SPFA求最短路之SLF优化
呃呃呃就是加了个SLF优化而已
#include<bits/stdc++.h>
using namespace std;
const int maxn = 100000 + 10;
const int INF = 0x7FFFFFFF;
int pre[maxn], dis[maxn], path[maxn];
bool vis[maxn];
int head[maxn], n, m;
int tot, cnt;
struct node {
int v, w, next;
} E[2 * maxn];
void add(int u, int v, int w) {
E[tot].v = v;
E[tot].w = w;
E[tot].next = head[u];
head[u] = tot++;
}
void init() {
tot = 0;
memset(vis, 0, sizeof vis);
memset(head, -1, sizeof head);
}
void spfa(int st) {
for (int i = 1;i <= n; i++) vis[i] = false, dis[i] = INF;
int now, next;
dis[st] = 0; vis[st] = 1;
deque<int> q;
q.push_back(st);
pre[st] = -1;
while(!q.empty()) {
now = q.front();
q.pop_front();
vis[now] = 0;
for (int i = head[now]; i != -1;i = E[i].next) {
next = E[i].v;
if(dis[next] > dis[now] + E[i].w) {
dis[next] = dis[now] + E[i].w;
pre[next] = now;
if(!vis[next]) {
vis[next] = 1;
if (q.empty() || dis[next] > dis[q.front()]) q.push_back(next);
else q.push_front(next);
}
}
}
}
}
void print(int x) {
if(pre[x] == -1) return;
print(pre[x]);
printf("%d ", x);
}
int main() {
init();
n = 3; m = 2;
int w;
for (int i = 1;i <= m; i++) {scanf("%d", &w); add(i, i + 1, w);}
spfa(1);
if(dis[n] == INF) puts("-1");
else printf("%d\n", dis[n]);
return 0;
}
算法三十、SPFA之LLL优化
#include<bits/stdc++.h>
#define MAXN 10010
#define MAXM 500010
#define MAX 2147483647
using namespace std;
int n, m, t, c = 1;
int head[MAXN], path[MAXN];
bool vis[MAXN];
struct node {
int next, to, w;
}a[MAXM << 1];
inline int relax (int u, int v, int w) {
if (path[v] > path[u] + w) {
path[v] = path[u] + w;
return 1;
}
return 0;
}
inline void add(int u, int v, int w) {
a[c].to = v;
a[c].w = w;
a[c].next = head[u];
head[u] = c++;
}
void spfa() {
int u, v, num = 0;
long long x = 0;
list<int> q;
for (int i = 1;i <= n; i++){path[i] = MAX; vis[i] = 0;}
path[1] = 0;
vis[1] = 1;
q.push_back(1);
num++;
while (!q.empty()) {
u = q.front();
q.pop_front();
num--; x -= path[u];
while (num && path[u] > x / num){
q.push_back(u);
u = q.front();
q.pop_front();
}
vis[u] = 0;
for (int i = head[u]; i ; i = a[i].next) {
v = a[i].to;
if (relax(u, v, a[i].w) && !vis[v]) {
vis[v] = 1;
if(!q.empty() && path[v] < path[q.front()]) q.push_front(v);
else q.push_back(v);
num++; x += path[v];
}
}
}
}
int main() {
n = 3; m = 2;
for (int i = 1;i <= m; i++) {
int w;
scanf("%d", &w);
add(i, i + 1, w);
}
spfa();
printf("%d\n", path[n]);
return 0;
}
算法三十一、SPFA之SLF+LLL优化算法
#include <bits/stdc++.h>
using namespace std;
const int INF = 1 << 30;
const int gg = 200000 + 11;
int head[gg], dis[gg], n, m, cnt;
bool vis[gg];
int sum, tot;
struct node{
int net, to, w;
} a[gg];
inline void add(int i, int j, int w) {
a[++cnt].to = j;
a[cnt].net = head[i];
a[cnt].w = w;
head[i] = cnt;
}
inline void spfa(int s) {
deque<int> q;
for (int i = 1;i <= n; i++) dis[i] = INF;
dis[s] = 0; vis[s] = 1;
q.push_back(s);
tot = 1;
while(!q.empty()) {
int u = q.front();
q.pop_front();
vis[u] = false;
tot--;
sum -= dis[u];
for (int i = head[u]; ~i ; i = a[i].net) {
int v = a[i].to;
if (dis[v] > dis[u] + a[i].w) {
dis[v] = dis[u] + a[i].w;
if(!vis[v]) {
vis[v] = 1;
if (q.empty() || dis[v] > dis[q.front()] || dis[v] * tot <= sum) q.push_back(v);
tot++;
sum += dis[v];
}
}
}
}
}
int main() {
memset(head, -1, sizeof head);
n = 3; m = 2;
for (int i = 1;i <= m; i++) {
int w = 0;
scanf("%d", &w);
add(i, i + 1, w);
}
spfa(1);
if (dis[n] == INF) puts("-1");
else printf("%d\n", dis[n]);
return 0;
}
算法三十二、只用一个变量跑A+B
把一个long long
拆成两个int
指针啊!!!
#include<iostream>
using namespace std;
long long a;
int main() {
scanf("%d%d", (int*)(&a), (int*)(&a+1));
printf("%d\n", *((int*)&a) + *((int*)(&a+1)));
return 0;
}
算法三十三、矩阵乘法
#include<bits/stdc++.h>
using namespace std;
int a, b;
int x[2][2] = {
{0, 1},
{1, 1}
};
void mo(int f[]) {
int ans[2] = {0};
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++) ans[i] += f[j] * x[i][j];
for(int i = 0; i < 2; i++) f[i] = ans[i];
}
int main() {
cin >> a >> b;
int f[3] = {a, b};
mo(f);
cout << f[1];
return 0;
}
算法三十四、STL+dijkstra
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cctype>
#include <climits>
#include <algorithm>
#include <map>
#include <queue>
#include <vector>
#include <ctime>
#include <string>
#include <cstring>
using namespace std;
const int N=405;
struct Edge {
int v,w;
};
vector<Edge> edge[N*N];
int n;
int dis[N*N];
bool vis[N*N];
struct cmp {
bool operator()(int a,int b) {
return dis[a]>dis[b];
}
};
int Dijkstra(int start,int end)
{
priority_queue<int,vector<int>,cmp> dijQue;
memset(dis,-1,sizeof(dis));
memset(vis,0,sizeof(vis));
dijQue.push(start);
dis[start]=0;
while(!dijQue.empty()) {
int u=dijQue.top();
dijQue.pop();
vis[u]=0;
if(u==end)
break;
for(int i=0; i<edge[u].size(); i++) {
int v=edge[u][i].v;
if(dis[v]==-1 || dis[v]>dis[u]+edge[u][i].w) {
dis[v]=dis[u]+edge[u][i].w;
if(!vis[v]) {
vis[v]=true;
dijQue.push(v);
}
}
}
}
return dis[end];
}
int main()
{
int a,b;
scanf("%d%d",&a,&b);
Edge Qpush;
Qpush.v=1;
Qpush.w=a;
edge[0].push_back(Qpush);
Qpush.v=2;
Qpush.w=b;
edge[1].push_back(Qpush);
printf("%d",Dijkstra(0,2));
return 0;
}
算法三十五、数学表达式
#include <bits/stdc++.h>
using namespace std;
long long a, b;
int main() {
cin >> a >> b;
cout << a - b + (a * 2) - (a - b) - a + (a + (b - a)) << endl;
return 0;
}
最后送上两个链接,大家可以点进去看看~
#include[HTML_REMOVED]
using namespace std;
const int N=500;
int a[N],b[N],c[N],d[N],e[N];
void init(int a[]){
string s;
cin>>s;
a[0]=s.size();
for(int i=1;i<=a[0];i++)a[i]=s[s.size()-i]-‘0’;
while(a[0]>1&&a[a[0]]==0)a[0]–;
}
void print(int a[]){
int i;
if(a[0]==0){
cout<<0<[HTML_REMOVED]b[0])return 1;
if(a[0][HTML_REMOVED]=1;i–){
if(a[i]>b[i])return 1;
if(a[i][HTML_REMOVED]1&&c[c[0]]==0)c[0]–;
}
int main(){
init(a);
init(b);
add(a,b,c);
print(c);
return 0;
}
大佬请在代码前面加上:
```
这样会好看一些~
噢
好的~我看看
大佬这是什么做法呢?给个名字?
高精度数组
压位高精?是的话我去学下
(我只学过普通高精)
@我是Sun,建议在最后加入此链接:https://www.acwing.com/file_system/file/content/whole/index/content/3084120/
好滴hhh
20以后根本看不懂
hhh……打表你一定看得懂……
还有……大佬网络流看得懂?
我看不懂……a+b 学会整个OI 。。。。。。
hhh
所以我终于懂了
AcWing中最难的一题是
# A+B
………………
好厉害!
捧场!~
sun好棒啊~[HTML_REMOVED]
好厉害!!
#### 恭喜sun成为AcWing最活跃童鞋称号
呃……
呃……
呃……
%%%%
%%%%%
%%%
%%%
niubility
hh看了半天才看出来一个n一个b……
英语不好的后果啊现在又看出来了不是英语
我语文真是太糟糕了……这玩意儿是中式英语
还有:shability、zhuangbility
hhh………………
持续更新呀,,,
好滴,但是要大佬们给思路~
我还不一定做得出来