图的基本概念
定义
二元组的定义
图G是一个有序二元组(V,E),其中V称为顶集(Vertices Set),E称为边集(Edges set),E与V不相交。它们亦可写成V(G)和E(G)。其中,顶集的元素被称为顶点(Vertex),边集的元素被称为边(edge)。
E的元素都是二元组,用(x,y)表示,其中x,y∈V。
三元组的定义
图G是指一个三元组(V,E,I),其中V称为顶集,E称为边集,E与V不相交;I称为关联函数,I将E中的每一个元素映射到V*V。如果e被映射到(u,v),那么称边e连接顶点u,v,而u,v则称作e的端点,u,v此时关于e相邻。同时,若两条边i,j有一个公共顶点u,则称i,j关于u相邻。
分类
有向图、无向图
如果给图的每条边规定一个方向,那么得到的图称为有向图。在有向图中,与一个节点相关联的边有出边和入边之分。相反,边没有方向的图称为无向图。
单图
一个图如果任意两顶点之间只有一条边(在有向图中为两顶点之间每个方向只有一条边);边集中不含环,则称为单图。
基本术语
阶(Order):图G中点集V的大小称作图G的阶。
子图(Sub-Graph):当图G’=(V’,E’)其中V‘包含于V,E’包含于E,则G’称作图G=(V,E)的子图。每个图都是本身的子图。
生成子图(Spanning Sub-Graph):指满足条件V(G’) = V(G)的G的子图G’。
导出子图(Induced Subgraph):以图G的顶点集V的非空子集V1为顶点集,以两端点均在V1中的全体边为边集的G的子图,称为V1导出的导出子图;以图G的边集E的非空子集E1为边集,以E1中边关联的顶点的全体为顶点集的G的子图,称为E1导出的导出子图。
度(Degree):一个顶点的度是指与该顶点相关联的边的条数,顶点v的度记作d(v)。入度(In-degree)和出度(Out-degree):对于有向图来说,一个顶点的度可细分为入度和出度。一个顶点的入度是指与其关联的各边之中,以其为终点的边数;出度则是相对的概念,指以该顶点为起点的边数。
自环(Loop):若一条边的两个顶点为同一顶点,则此边称作自环。
路径(Path):从u到v的一条路径是指一个序列v0,e1,v1,e2,v2,…ek,vk,其中ei的顶点为vi及vi - 1,k称作路径的长度。如果它的起止顶点相同,该路径是“闭”的,反之,则称为“开”的。一条路径称为一简单路径(simple path),如果路径中除起始与终止顶点可以重合外,所有顶点两两不等。
行迹(Trace):如果路径P(u,v)中的边各不相同,则该路径称为u到v的一条行迹。
轨道(Track):如果路径P(u,v)中的顶点各不相同,则该路径称为u到v的一条轨道。
闭的行迹称作回路(Circuit),闭的轨称作圈(Cycle)。(另一种定义是:walk对应上述的path,path对应上述的track。Trail对应trace。)
桥(Bridge):若去掉一条边,便会使得整个图不连通,该边称为桥。
图的存储表示
邻接矩阵:
有向图的邻接矩阵
具有n个顶点的有向图可以用一个n′n的方形矩阵表示。假设该矩阵的名称为M,则当是该有向图中的一条弧时,M[i,j]=1;否则M[i,j]=0。第i个顶点的出度为矩阵中第i行中”1”的个数;入度为第i列中”1”的个数,并且有向图弧的条数等于矩阵中”1”的个数。
无向图的邻接矩阵
具有n个顶点的无向图也可以用一个n′n的方形矩阵表示。假设该矩阵的名称为M,则当(vi,vj)是该无向图中的一条边时,M[i,j]=M[j,i]=1;否则,M[i,j]=M[j,j]=0。第i个顶点的度为矩阵中第i 行中”1”的个数或第i列中”1”的个数。图中边的数目等于矩阵中”1”的个数的一半,这是因为每条边在矩阵中描述了两次。
图的基本操作
(1)创建一个图结构 CreateGraph(G)
(2)检索给定顶点 LocateVex(G,elem)
(3)获取图中某个顶点 GetVex(G,v)
(4)为图中顶点赋值 PutVex(G,v,value)
(5)返回第一个邻接点 FirstAdjVex(G,v)
(6)返回下一个邻接点 NextAdjVex(G,v,w)
(7)插入一个顶点 InsertVex(G,v)
(8)删除一个顶点 DeleteVex(G,v)
(9)插入一条边 InsertEdge(G,v,w)
(10)删除一条边 DeleteEdge(G,v,w)
(11)遍历图 Traverse(G,v)
太巨了
nice!