平衡树和平衡因子
AVL 树是最早的平衡二叉树。
对于AVL树的任意一个节点,左子树和右子树的高度差不能超过1
用某子树左右两子树高度差作为平衡因子的度量
实际存储时,每个节点存储其所在子树的高度,用以辅助求解平衡因子。
平衡树性质验证
中序遍历的序列是从小到大排列的。
每个节点的平衡因子绝对值不超过1
平衡树性质的维护
什么时候维护
当插入和删除的节点时,有可能破坏树的平衡。
当平衡被破坏时候,通过左旋和右旋自底向上的将树重新调整到平衡状态。
如何维护(仔细看其实是两种情况, LL RR)
LL
y
/
x
/
z
判定方式: balanceFactor > 1 && getBalancedFactor(tr[node].left) >= 0
调整方式: 右旋y
RR
y
\
x
\
z
判定方式: balanceFactor < -1 && getBalancedFactor(tr[node].right) <= 0
调整方式: 左旋y
LR
y
/
x
\
z
判定方式 : balanceFactor > 1 && getBalancedFactor(tr[node].left) < 0
调整方式: 先左旋x,转化成 LL,后右旋y
RL
y
\
x
/
z
判定方式 : balanceFactor < -1 && getBalancedFactor(tr[node].right) > 0
调整方式: 先右旋x,转化成RR, 后左旋y
插入 查找 删除
和二叉树相似,插入或者删除后需要调整平衡
允许重复插入相同元素
代码与正确性验证
//类的命名不要介意,只是拿这道题验证实现的对不对。
class Skiplist {
public:
const static int N = 50010, INF = 50011;
struct Node {
int key, left = 0, right = 0, height;
void init(int _key) {
key = _key, left = 0, right = 0, height = 0; // 初始化比较重要
}
} tr[N];
int root = 0, idx = 0, size = 0;
// 依然是带垃圾回收机制
int nodes[N], tt = -1;
Skiplist() {
}
int getHeight(int node) {
if (!node) return 0;
return tr[node].height;
}
int getBalancedFactor(int node) {
if (!node) return 0;
return getHeight(tr[node].left) - getHeight(tr[node].right);
}
int newNode() {
if (tt < 0) nodes[++tt] = ++idx;
size ++;
return nodes[tt--];
}
void gcNode(int u) {
nodes[++tt] = u;;
size --;
}
void pushup(int u) {
tr[u].height = 1 + max(getHeight(tr[u].left), getHeight(tr[u].right));
}
int rightRotate(int y) {
int x = tr[y].left, z = tr[x].left;
int t = tr[x].right;
tr[x].right = y, tr[y].left = t;
pushup(y), pushup(x);
return x;
}
int leftRotate(int y) {
int x = tr[y].right, z = tr[x].right;
int t = tr[x].left;
tr[x].left = y, tr[y].right = t;
pushup(y), pushup(x);
return x;
}
bool search(int target) {
int u = getNode(root, target);
if (u > 0) return true;
return false;
}
int getNode(int node, int key) {
if (!node) return 0;
if (key == tr[node].key) return node;
else if (key < tr[node].key) return getNode(tr[node].left, key);
else return getNode(tr[node].right, key);
}
void add(int num) {
root = add(root, num);
}
int add(int node, int key) {
if (!node) {
int u = newNode();
tr[u].init(key);
return u;
}
if (key < tr[node].key)
tr[node].left = add(tr[node].left, key);
else if (key >= tr[node].key)
tr[node].right = add(tr[node].right, key);
tr[node].height = 1 + max(getHeight(tr[node].left), getHeight(tr[node].right));
int balanceFactor = getBalancedFactor(node);
// 维护平衡
// LL
if (balanceFactor > 1 && getBalancedFactor(tr[node].left) >= 0) {
int res = rightRotate(node);
return res;
}
// RR
if (balanceFactor < -1 && getBalancedFactor(tr[node].right) <= 0) {
return leftRotate(node);
}
// LR
if (balanceFactor > 1 && getBalancedFactor(tr[node].left) < 0) {
tr[node].left = leftRotate(tr[node].left);
return rightRotate(node);
}
// RL
if (balanceFactor < -1 && getBalancedFactor(tr[node].right) > 0) {
tr[node].right = rightRotate(tr[node].right);
return leftRotate(node);
}
return node;
}
bool erase(int num) {
if (!search(num)) return false;
else root = remove(root, num);
//print();
return true;
}
int minimum(int node) {
while (tr[node].left) node = tr[node].left;
return node;
}
int removeMin(int node) {
if (!tr[node].left) return tr[node].right;
tr[node].left = removeMin(tr[node].left);
return node;
}
int remove(int node, int key) {
if (!node) return 0;
int ret;
if (key < tr[node].key) {
tr[node].left = remove(tr[node].left, key);
ret = node;
} else if (key > tr[node].key) {
tr[node].right = remove(tr[node].right, key);
ret = node;
} else {
// 左子树为空
if (!tr[node].left) {
ret = tr[node].right;
gcNode(node);
}
// 右子树为空
else if (!tr[node].right) {
ret = tr[node].left;
gcNode(node);
} else {
// 左右子树都不为空
int successor = minimum(tr[node].right);
tr[successor].right = removeMin(tr[node].right); // 先计算右子树
tr[successor].left = tr[node].left;
ret = successor;
gcNode(node);
}
}
// 删除完成后为空的情况
if (!ret) return 0;
tr[ret].height = 1 + max(getHeight(tr[ret].left), getHeight(tr[ret].right));
int balanceFactor = getBalancedFactor(ret);
// LL
if (balanceFactor > 1 && getBalancedFactor(tr[ret].left) >= 0) {
return rightRotate(ret);
}
// RR
if (balanceFactor < -1 && getBalancedFactor(tr[ret].right) <= 0) {
return leftRotate(ret);
}
// LR
if (balanceFactor > 1 && getBalancedFactor(tr[ret].left) < 0) {
int x = leftRotate(ret);
return rightRotate(x);
}
// RL
if (balanceFactor < -1 && getBalancedFactor(tr[ret].right) > 0) {
int x = rightRotate(ret);
return leftRotate(x);
}
return ret;
}
};
/**
* Your Skiplist object will be instantiated and called as such:
* Skiplist* obj = new Skiplist();
* bool param_1 = obj->search(target);
* obj->add(num);
* bool param_3 = obj->erase(num);
*/
leetcode 1206 验证通过