正序/逆序问题:
优化成一维数组的情况,只有完全背包会正序遍历 j 。
因为一维数组的情况下,正序遍历如果背包剩余容积足够(j>v[i]
),会重复装入一个物品,这是完全背包的思路。
逆序遍历则不会有重复的现象,因为前面的数据都为 0 。
从左往右更新有脏数据。
从右往左更新都是 0 。
小规律:
- 四种背包的朴素做法,也就是二维状态都是正序,一维都是倒序。
下面是一个很有参考价值的例子和过程模拟。
例子:假设有3件物品,背包的总体积为10
物品 体积 价值
i = 1 4 5
i = 2 5 6
i = 3 6 7
因为 f[0][j] 总共0件物品,所以最大价值为 0, 即 f[0][j] == 0 成立
如果 j 层循环是递增的:
for (int i = 1; i <= n; i++) {
for (int j = v[i]; j <= m; j++) {
f[j] = max(f[j], f[j - v[i]] + w[i]);
}
}
当还未进入循环时:
f[0] = 0; f[1] = 0; f[2] = 0; f[3] = 0; f[4] = 0;
f[5] = 0; f[6] = 0; f[7] = 0; f[8] = 0; f[9] = 0; f[10] = 0;
当进入循环 i == 1 时:
f[4] = max(f[4], f[0] + 5); 即max(0, 5) = 5; 即f[4] = 5;
f[5] = max(f[5], f[1] + 5); 即max(0, 5) = 5; 即f[5] = 5;
f[6] = max(f[6], f[2] + 5); 即max(0, 5) = 5; 即f[6] = 5;
f[7] = max(f[7], f[3] + 5); 即max(0, 5) = 5; 即f[7] = 5;
重点来了!!!
f[8] = max(f[8], f[4] + 5); 即max(0, 5 + 5) = 10; 即f[8] = 10;
这里就已经出错了
因为此时处于 i == 1 这一层,即物品只有一件,不存在单件物品满足价值为10
所以已经出错了。
如果 j 层循环是逆序的:
for (int i = 1; i <= n; i++) {
for (int j = m; j >= v[i]; j--) {
f[j] = max(f[j], f[j - v[i]] + w[i]);
}
}
模拟过程如下:
当还未进入循环时:
f[0] = 0; f[1] = 0; f[2] = 0; f[3] = 0; f[4] = 0;
f[5] = 0; f[6] = 0; f[7] = 0; f[8] = 0; f[9] = 0; f[10] = 0;
当进入循环 i == 1 时:w[i] = 5; v[i] = 4;
j = 10:f[10] = max(f[10], f[6] + 5); 即max(0, 5) = 5; 即f[10] = 5;
j = 9 :f[9] = max(f[9], f[5] + 5); 即max(0, 5) = 5; 即f[9] = 5;
j = 8 :f[8] = max(f[8], f[4] + 5); 即max(0, 5) = 5; 即f[8] = 5;
j = 7 :f[7] = max(f[7], f[3] + 5); 即max(0, 5) = 5; 即f[7] = 5;
j = 6 :f[6] = max(f[6], f[2] + 5); 即max(0, 5) = 5; 即f[6] = 5;
j = 5 :f[5] = max(f[5], f[1] + 5); 即max(0, 5) = 5; 即f[5] = 5;
j = 4 :f[6] = max(f[4], f[0] + 5); 即max(0, 5) = 5; 即f[4] = 5;
当进入循环 i == 2 时:w[i] = 6; v[i] = 5;
j = 10:f[10] = max(f[10], f[5] + 6); 即max(5, 11) = 11; 即f[10] = 11;
j = 9 :f[9] = max(f[9], f[4] + 6); 即max(5, 11) = 5; 即f[9] = 11;
j = 8 :f[8] = max(f[8], f[3] + 6); 即max(5, 6) = 6; 即f[8] = 6;
j = 7 :f[7] = max(f[7], f[2] + 6); 即max(5, 6) = 6; 即f[7] = 6;
j = 6 :f[6] = max(f[6], f[1] + 6); 即max(5, 6) = 6; 即f[6] = 6;
j = 5 :f[5] = max(f[5], f[0] + 6); 即max(5, 6) = 6; 即f[5] = 6;
当进入循环 i == 3 时: w[i] = 7; v[i] = 6;
j = 10:f[10] = max(f[10], f[4] + 7); 即max(11, 12) = 12; 即f[10] = 12;
j = 9 :f[9] = max(f[9], f[3] + 6); 即max(11, 6) = 11; 即f[9] = 11;
j = 8 :f[8] = max(f[8], f[2] + 6); 即max(6, 6) = 6; 即f[8] = 6;
j = 7 :f[7] = max(f[7], f[1] + 6); 即max(6, 6) = 6; 即f[7] = 6;
j = 6 :f[6] = max(f[6], f[0] + 6); 即max(6, 6) = 6; 即f[6] = 6;
就模拟一下发现没有错误,即逆序就可以解决这个优化的问题了。
从1开始/从v[i]开始
-
从1开始的都是朴素二维数组做法。因为二维数组在j<v[i]时也要有数据,供后续状态转移时使用。
-
一维数组不需要。因为一维的情况下,赋值语句从f[i] [j] = f[i-1] [j] 变成了 f[ j ] = f[ j ] ,两者等价,但右式可以消掉。 判断语句挪到循环里,结束。
同理,省略的
f[i] = f[i]
等价于f[i][j] = f[i-1][j]
因为赋值语句里的 f[i] = f[i] ,右值为上一层循环里的 f[i] ,即 i - 1 。
这个f[j]还没有在第 i 层的循环里被更新过。
k的出现
k在多重背包、分组背包(特殊多重背包)、完全背包单独的朴素形式出现。
01背包只有选或不选两种情况,不需要 k 的引入。
完全背包一维形式在循环中已经包含了“重复调用,向上更新”的目的,不需要再引入 k。
这一点可以参考 正序/逆序问题。