import math
import torch
from torch import nn
from d2l import torch as d2l
# 遮掩softmax操作
def masked_softmax(X, valid_lens):
"""通过最后一个轴上遮蔽元素来执行 softmax 操作"""
# X: 3D张量,valid_lens: 1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1]) # 各元素重复shape[1]次
else:
valid_lens = valid_lens.reshape(-1) # 将valid_lens重塑为1D张量
# 最后一个轴上被遮蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
value=-1e6)
return nn.functional.softmax(X.reshape(shape), dim=-1)
# 加性注意力
class AdditiveAttention(nn.Module):
"""加性注意力"""
def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
super(AdditiveAttention, self).__init__(**kwargs)
self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
self.w_v = nn.Linear(num_hiddens, 1, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, queries, keys, values, valid_lens):
queries, keys = self.W_q(queries), self.W_k(keys)
# 在维度扩展后
# queries的形状:(batch_size,查询数量,1,num_hidden)
# key的形状:(batch_size,1,“键-值”对的数量,num_hiddens)
# 使用广播方式进行求和
features = queries.unsqueeze(2) + keys.unsqueeze(1)
features = torch.tanh(features)
# self.w_v只有一个输出,因此从形状中移除最后那个维度
# scores的形状为(batch_size,查询数量,“键-值”对的数量)
scores = self.w_v(features).squeeze(-1)
self.attention_weights = masked_softmax(scores, valid_lens)
# values的形状为(batch_size,“键-值”对的数量,值的维度)
return torch.bmm(self.dropout(self.attention_weights), values)
# 最终返回的形状为(batch_size,查询数量,值的维度)
# 如(batch_num, query_num, value_dim)表示的就是第query_num个query与第value_dim个value的注意力权重
queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))
values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(
2, 1, 1)
valid_lens = torch.tensor([2, 6])
attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8,
dropout=0.1)
attention.eval()
print(attention(queries, keys, values, valid_lens))
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
xlabel='Keys', ylabel='Queries')
d2l.plt.show()
# 缩放点积注意力
class DotProductAttention(nn.Module):
"""缩放点积注意力"""
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
# queries的形状:(batch_size,查询数量,d)
# keys的形状:(batch_size,“键-值”对的数量,d)
# values的形状:(batch_size,“键-值”对的数量,值的维度)
# valid_lens的形状:(batch_size,)或(batch_size,查询数量)
def forward(self, queries, keys, values, valid_lens=None):
d = queries.shape[-1]
scores = torch.bmm(queries, keys.transpose(1, 2)) / math.sqrt(d)
self.attention_weights = masked_softmax(scores, valid_lens)
return torch.bmm(self.dropout(self.attention_weights), values)
理论方面可以看李宏毅老师的视频,讲的很细致!
https://www.youtube.com/watch?v=hYdO9CscNes