在学习高精度乘低精度的时候的一点思考
高精度乘低精度是让高精度的每一位都乘低精度的值
那高精度乘高精度可以理解为n个高精度乘低精度相加的值
#include<iostream>
#include<vector>
using namespace std;
vector<int> add(vector<int>& A, vector<int>& B) {
vector<int> C;
int t = 0;
for (int i = 0; i < A.size() || i < B.size(); i++) {
if (i < A.size()) {
t += A[i];
}
if (i < B.size()) {
t += B[i];
}
C.push_back(t % 10);
t /= 10;
}
if (t) {
C.push_back(1);
}
return C;
}
vector<int> mul(vector<int>& A, int b) {
int t = 0;
vector<int> C;
for (int i = 0; i < A.size() || t; i++) {
if (i < A.size()) {
t += A[i] * b;
}
C.push_back(t % 10);
t /= 10;
}
while (C.size() > 1 && C.back() == 0) {
C.pop_back();
}
return C;
}
vector<int> Mul(vector<int>& A, vector<int>& B) {
vector<int> SUM;
for (int i = 0; i < B.size(); i++) {
vector<int> C;
C = mul(A, B[i]);
for (int j = 0; j < i; j++) {
C.insert(C.begin(), 0);
}
SUM = add(SUM, C);
}
return SUM;
}
int main() {
string a, b;
vector<int> A, B;
cin >> a >> b;
for (int i = a.size() - 1; i >= 0; i--) {
A.push_back(a[i] - '0');
}
for (int i = b.size() - 1; i >= 0; i--) {
B.push_back(b[i] - '0');
}
vector<int> C = Mul(A, B);
for (int i = C.size() - 1; i >= 0; i--) {
printf("%d", C[i]);
}
return 0;
}