最小生成树
Prim 算法
(稀疏图)
朴素版Prim O(n^2)
堆优化版Prim O(mlogn)
Kruskal 算法
(稠密图)
O(mlogm)
二分图
染色法
O(n+m)
匈牙利算法
O(mn)
,实际运行时间一般远小于O(mn)
朴素版Prim 算法
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;
int n, m;
int g[N][N];
int dist[N];
bool st[N];
int prim()
{
memset(dist, 0x3f, sizeof dist);
int res = 0;
for (int i = 0; i < n; i ++ )
{
int t = -1;
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
if (i && dist[t] == INF) return INF;
if (i) res += dist[t];
st[t] = true;
for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
}
return res;
}
int main()
{
memset(g, 0x3f, sizeof g);
cin >> n >> m;
while (m --)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a][b] = g[b][a] = min(g[a][b], c);
}
int t = prim();
if (t == INF) puts("impossible");
else printf("%d\n", t);
return 0;
}
Kruskal 算法
并查集 ( acwing837 )
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 2e5 + 10;
int n, m;
int p[N];
struct Edge{
int a, b, w;
}edges[N];
bool cmp(Edge A, Edge B)
{
return A.w < B.w;
}
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
for (int i = 0; i < m; i ++ )
{
int a, b, w;
scanf("%d%d%d", &a, &b, &w);
edges[i] = {a, b, w};
}
sort(edges, edges + m, cmp);
for (int i = 1; i <= n; i ++ ) p[i] = i;
int res = 0, cnt = 0;
for (int i = 0; i < m; i ++ )
{
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
a = find(a), b = find(b);
if (a != b)
{
p[a] = b;
res += w;
cnt ++;
}
}
if (cnt < n - 1) puts("impossible");
else printf("%d\n", res);
return 0;
}
染色法
二分图当且仅当图中不含奇数环
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 1e5 + 10, M = 2e5 + 10;
int n, m;
int h[N], e[M], ne[M], idx;
int color[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
bool dfs(int u, int c)
{
color[u] = c;
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (!color[j])
{
if (!dfs(j, 3 - c)) return false;
}
else if (color[j] == c) return false;
}
return true;
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof h);
while (m --)
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
bool flag = true;
for (int i = 1; i <= n; i ++ )
if (!color[i])
{
if (!dfs(i, 1))
{
flag = false;
break;
}
}
if (flag) puts("Yes");
else puts("No");
return 0;
}
匈牙利算法
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 1e5 + 10;
int n1, n2, m;
int h[N], e[N], ne[N], idx;
int match[N];
bool st[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
bool find(int x)
{
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if (st[j]) continue;
st[j] = true;
if (!match[j] || find(match[j]))
{
match[j] = x;
return true;
}
}
return false;
}
int main()
{
memset(h, -1, sizeof h);
cin >> n1 >> n2 >> m;
while (m --)
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
}
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
memset(st, false, sizeof st);
if (find(i)) res ++;
}
cout << res << endl;
return 0;
}