∪:并集
并集
定义:由所有属于A或属于B的元素所组成的集合,叫做A,B的并集
表示:A∪B 读作:A并B
性质:A∪A=A
A∪Φ = Φ∪A=A(其中Φ在数学上代表空集)
A∪B=B∪A
定义 由所有属于集合A或属于集合B的元素所组成的集合叫做并集,记作A∪B,读作“A并B”
A∪B={xIx∈A或x∈B}
在集合论和数学的其他分支中,一组集合的并集是这些集合的所有元素构成的集合,而不包含其他元素。
举例编辑 语音
集合 {1, 2, 3} 和 {2, 3, 4} 的并集是 {1, 2, 3, 4}。数字 9 不 属于素数集合 {2, 3, 5, 7, 11, …} 和偶数集合 {2, 4, 6, 8, 10, …} 的并集,因为 9 既不是素数,也不是偶数。
更通常的,多个集合的并集可以这样定义:例如,A, B 和 C 的并集含有所有 A 的元素,所有 B 的元素和所有 C 的元素,而没有其他元素。
形式上:x 是 A ∪B ∪C 的元素,当且仅当 x ∈A 或 x ∈B 或 x ∈C。