题目描述
在一个 8 x 8 的棋盘上,有一个白色车(rook)。也可能有空方块,白色的象(bishop)和黑色的卒(pawn)。它们分别以字符 “R”,“.”,“B” 和 “p” 给出。大写字符表示白棋,小写字符表示黑棋。
车按国际象棋中的规则移动:它选择四个基本方向中的一个(北,东,西和南),然后朝那个方向移动,直到它选择停止、到达棋盘的边缘或移动到同一方格来捕获该方格上颜色相反的卒。另外,车不能与其他友方(白色)象进入同一个方格。
返回车能够在一次移动中捕获到的卒的数量。
样例
输入:[[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".","R",".",".",".","p"],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."]]
输出:3
解释:
在本例中,车能够捕获所有的卒。
输入:[[".",".",".",".",".",".",".","."],[".","p","p","p","p","p",".","."],[".","p","p","B","p","p",".","."],[".","p","B","R","B","p",".","."],[".","p","p","B","p","p",".","."],[".","p","p","p","p","p",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."]]
输出:0
解释:
象阻止了车捕获任何卒。
输入:[[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".","p",".",".",".","."],["p","p",".","R",".","p","B","."],[".",".",".",".",".",".",".","."],[".",".",".","B",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".",".",".",".",".","."]]
输出:3
解释:
车可以捕获位置 b5,d6 和 f5 的卒。
注意
board.length == board[i].length == 8
board[i][j]
可以是'R'
,'.'
,'B'
或'p'
- 只有一个格子上存在
board[i][j] == 'R'
算法
(暴力枚举) $O(n)$
- 首先找到车的位置,然后分别向四个方向枚举即可。
时间复杂度
- 每个方向最多需要遍历一行或一列,故时间复杂度为 $O(n)$。
空间复杂度
- 仅需要常数的额外空间。
C++ 代码
class Solution {
public:
bool check(int x, int y, int &ans, const vector<vector<char>>& board) {
if (board[x][y] == 'p') {
ans++;
return true;
}
if (board[x][y] == 'B')
return true;
return false;
}
int numRookCaptures(vector<vector<char>>& board) {
int n = board.size();
int x = -1, y = -1;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
if (board[i][j] == 'R') {
x = i; y = j;
break;
}
if (x != -1)
break;
}
int ans = 0;
for (int i = y + 1; i < n; i++)
if (check(x, i, ans, board))
break;
for (int i = y - 1; i >= 0; i--)
if (check(x, i, ans, board))
break;
for (int i = x + 1; i < n; i++)
if (check(i, y, ans, board))
break;
for (int i = x - 1; i >= 0; i--)
if (check(i, y, ans, board))
break;
return ans;
}
};