题目描述
小S是农场主,他养了 M 只猫,雇了 P 位饲养员。
农场中有一条笔直的路,路边有 N 座山,从 1 到 N 编号。
第 i 座山与第 i-1 座山之间的距离为 Di。
饲养员都住在 1 号山。
有一天,猫出去玩。
第 i 只猫去 Hi 号山玩,玩到时刻 Ti 停止,然后在原地等饲养员来接。
饲养员们必须回收所有的猫。
每个饲养员沿着路从 1 号山走到 N 号山,把各座山上已经在等待的猫全部接走。
饲养员在路上行走需要时间,速度为1 米/单位时间。
饲养员在每座山上接猫的时间可以忽略,可以携带的猫的数量为无穷大。
例如有两座相距为 1 的山,一只猫在 2 号山玩,玩到时刻 3 开始等待。
如果饲养员从 1 号山在时刻 2 或 3 出发,那么他可以接到猫,猫的等待时间为 0 或 1。
而如果他于时刻 1 出发,那么他将于时刻 2 经过 2 号山,不能接到当时仍在玩的猫。
你的任务是规划每个饲养员从 1 号山出发的时间,使得所有猫等待时间的总和尽量小。
饲养员出发的时间可以为负。
思路
模板题,即是一个人连续接连续玩完时间的猫。
人的数量是有限的,求猫的最小等待时间。
所以就是带入斜率,维护单调队列。
个人理解,不喜勿喷;
如不满意,出门右转查看其它优质题解。
[/doge]