题目描述
Design a data structure that supports all following operations in average O(1) time.
Note: Duplicate elements are allowed.
insert(val): Inserts an item val to the collection.
remove(val): Removes an item val from the collection if present.
getRandom: Returns a random element from current collection of elements. The probability of each element being returned is linearly related to the number of same value the collection contains.
样例
Example:
// Init an empty collection.
RandomizedCollection collection = new RandomizedCollection();
// Inserts 1 to the collection. Returns true as the collection did not contain 1.
collection.insert(1);
// Inserts another 1 to the collection. Returns false as the collection contained 1. Collection now contains [1,1].
collection.insert(1);
// Inserts 2 to the collection, returns true. Collection now contains [1,1,2].
collection.insert(2);
// getRandom should return 1 with the probability 2/3, and returns 2 with the probability 1/3.
collection.getRandom();
// Removes 1 from the collection, returns true. Collection now contains [1,2].
collection.remove(1);
// getRandom should return 1 and 2 both equally likely.
collection.getRandom();
算法1
(Hashmap+swap) $O(n^2)$
因为需要O(1)时间复杂度,考虑Lookup table。 由于有重复数据,hashmap存储该数据值以及不同index。删除时swap链表尾部的元素和待删除元素,update其index信息。
时间复杂度
O(1)
O(n)
参考文献
C++ 代码
class RandomizedCollection {
public:
/** Initialize your data structure here. */
RandomizedCollection() {
}
/** Inserts a value to the collection. Returns true if the collection did not already contain the specified element. */
bool insert(int val) {
m[val].push(nums.size());
nums.push_back(val);
return m[val].size()==1;
}
/** Removes a value from the collection. Returns true if the collection contained the specified element. */
bool remove(int val) {
if(m[val].empty()) return false;
int idx=m[val].top();
m[val].pop();
if(nums.size()-1!=idx)
{
int t=nums.back();
nums[idx]=t;
m[t].pop();
m[t].push(idx);
}
nums.pop_back();
return true;
}
/** Get a random element from the collection. */
int getRandom() {
return nums[rand()%nums.size()];
}
private:
vector<int> nums;
unordered_map<int,priority_queue<int>> m;// list begin(), erase
};