题目描述
给定一个二进制数组, 找到含有相同数量的 0 和 1 的最长连续子数组(的长度)。
示例 1:
输入: [0,1]
输出: 2
说明: [0, 1] 是具有相同数量0和1的最长连续子数组。
示例 2:
输入: [0,1,0]
输出: 2
说明: [0, 1] (或 [1, 0]) 是具有相同数量0和1的最长连续子数组。
算法1
(hash) O(n)
首先对原数组做处理,将所有的0都变为-1;这样一来 “含有相同数量的 0 和 1 的连续数组” 就等价为 “元素值总和为0的连续数组”。
其后,从头扫一遍数组,并记录当前的前缀和的值,将该值和对应的下标存入到一个标记数组或哈希表中。若该前缀和的值已出现过(即标记数组或哈希中已存在),则说明标记中的下标到当前扫描的下标的这段数组的总和值是为0的。
打个例子: [ -1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1 ] 在扫描完到第四个元素时,前缀和为-2 且未记录过,则将值-2和下标3记录起来。当扫描到 [ -1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1 ] , 此时得到的前缀和为-2,且知道标记中有记录过-2,则说明此刻下标到之前记录的下标的这段数组总和为0 [ -1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1 ] 。
参考文献
Java 代码
public class Solution {
public int findMaxLength(int[] nums) {
int n = nums.length;
if (n == 0) {
return 0;
}
int res = 0,sum = 0;
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++) {
sum += nums[i] != 0 ? 1 : -1;
if (sum == 0) {
res = i + 1;
} else if (map.containsKey(sum)) {
res = Math.max(res, i - map.get(sum));
} else {
map.put(sum, i);
}
}
return res;
}
}