题目描述
We have a list of points on the plane. Find the K closest points to the origin (0, 0).
(Here, the distance between two points on a plane is the Euclidean distance.)
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)
样例
Example 1:
Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:
Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)
算法1
(partition select) $O(n)$
用partition找pivot,如果pivot小于k-1,右移left,否则左移right。
时间复杂度
O(n)
O(1)
参考文献
C++ 代码
class Solution {
public:
vector<vector<int>> kClosest(vector<vector<int>>& points, int K) {
int n=points.size(), left=0, right=n-1;
while(left<right)
{
int p=partition(points, left, right);
if(p<K-1)
left=p+1;
else
right=p-1;
}
return vector<vector<int>>(points.begin(), points.begin()+K);
}
int partition(vector<vector<int>>& points, int left, int right)
{
int n=points.size(), p=left, l=left+1, r=right;
while(l<=r)
{
if(far(points[l], points[p])&&near(points[r], points[p]))
swap(points[l++], points[r--]);
else if(!far(points[l], points[p]))
l++;
else if(!near(points[r], points[p]))
r--;
}
swap(points[r], points[p]);
return r;
}
bool far(vector<int> &a, vector<int> &b)
{
return a[0]*a[0]+a[1]*a[1]>b[0]*b[0]+b[1]*b[1];
}
bool near(vector<int> &a, vector<int> &b)
{
return a[0]*a[0]+a[1]*a[1]<b[0]*b[0]+b[1]*b[1];
}
};