题目描述
Given an array of integers arr
of even length n
and an integer k
.
We want to divide the array into exactly n / 2
pairs such that the sum of each pair is divisible by k
.
Return True If you can find a way to do that or False otherwise.
样例
Example 1:
Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5
Output: true
Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10).
Example 2:
Input: arr = [1,2,3,4,5,6], k = 7
Output: true
Explanation: Pairs are (1,6),(2,5) and(3,4).
Example 3:
Input: arr = [1,2,3,4,5,6], k = 10
Output: false
Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10.
Example 4:
Input: arr = [-10,10], k = 2
Output: true
Example 5:
Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3
Output: true
Constraints:
arr.length == n
1 <= n <= 10^5
n
is even.-10^9 <= arr[i] <= 10^9
1 <= k <= 10^5
算法
开一个长度为k
的数组cnt
,来统计每个数对k
取模后结果相同的个数。对k
取模后为0的需要单独考虑,只能取模后为0的数字相互组合,所以个数必须是偶数。对于取模后大于0
的需要考虑k
的奇偶性,如果k
是奇数,那么k-1
是偶数,也就是取模后值为1的和k-1
组合,2和k - 2
组合,依此类推,所以只需要检查每队对应的个数是否相同;如果k
是偶数,那么最后会剩下k / 2
的自己配对,所以需要检查k/2
的个数必须是偶数。
时间复杂度$O(n)$,空间复杂度$O(k)$。
C++ 代码
class Solution {
public:
bool canArrange(vector<int>& arr, int k) {
std::ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
vector<int> cnt(k, 0);
for (const auto & e : arr) ++cnt[(e % k + k) % k];
if (cnt[0] & 1) return false;
int half = k >> 1;
if (k & 1) {
for (int i = 1; i <= half; ++i) {
if (cnt[i] != cnt[k - i]) return false;
}
}
else {
for (int i = 1; i < half; ++i) {
if (cnt[i] != cnt[k - i]) return false;
}
if (cnt[half] & 1) return false;
}
return true;
}
};