题目描述
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
算法
(动态规划) O(m*n)
实在比较简单,不写过程了, 思路就是转移时候每个点[i,j] 只会从 [i-1, j] 和 [i, j-1]转移过来。
定义二维数组dp[i][j]就可以了。
空间复杂度先不优化了。
Java 代码
public class Solution {
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
// 表示(0, 0)走到(m-1, n-1)的路径最小数字总和
int[][] dp = new int[m][n];
dp[0][0] = grid[0][0];
// 第一行
for (int j = 1; j < n; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
// 第一列
for (int i = 1; i < m; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[m - 1][n - 1];
}
}