题目描述
战争时期,前线有 n 个哨所,每个哨所可能会与其他若干个哨所之间有通信联系。
信使负责在哨所之间传递信息,当然,这是要花费一定时间的(以天为单位)。
指挥部设在第一个哨所。
当指挥部下达一个命令后,指挥部就派出若干个信使向与指挥部相连的哨所送信。
当一个哨所接到信后,这个哨所内的信使们也以同样的方式向其他哨所送信。
信在一个哨所内停留的时间可以忽略不计。
直至所有 n 个哨所全部接到命令后,送信才算成功。
因为准备充足,每个哨所内都安排了足够的信使
(如果一个哨所与其他 k 个哨所有通信联系的话,这个哨所内至少会配备 k 个信使)。
现在总指挥请你编一个程序,计算出完成整个送信过程最短需要多少时间。
输入格式
第 1 行有两个整数 n 和 m,中间用 1 个空格隔开,分别表示有 n 个哨所和 m 条通信线路。
第 2 至 m+1 行:每行三个整数 i、j、k,中间用 1 个空格隔开,
表示第 i 个和第 j 个哨所之间存在 双向 通信线路,且这条线路要花费 k 天。
输出格式
一个整数,表示完成整个送信过程的最短时间。
如果不是所有的哨所都能收到信,就输出-1。
数据范围
1≤n≤100,
1≤m≤200,
1≤k≤1000
输入样例:
4 4
1 2 4
2 3 7
2 4 1
3 4 6
输出样例:
11
算法1
单元最短路模板
C++ 代码
// 11123.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 300;
int g[N][N];
bool st[N];
int dist[N];
int n, m;
void dij()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 0; i < n; i++) {
int t = -1;
for (int j = 1; j <= n; j++) {
if (!st[j] && (t == -1 || dist[t] > dist[j])) {
t = j;
}
}
st[t] = true;
for (int j = 1; j <= n; j++) {
dist[j] = min(dist[j], dist[t] + g[t][j]);
}
}
return;
}
int main()
{
cin >> n >> m;
memset(g, 0x3f, sizeof g);
while (m--) {
int a, b, c;
cin >> a >> b >> c;
g[a][b] = (c);
g[b][a] = (c);
}
dij();
int ans = -1;
for (int i = 1; i <= n; i++) {
ans = max(dist[i], ans);
}
if (ans == 0x3f3f3f3f) ans = -1;
cout << ans << endl;
return 0;
}