算法1
(前缀和) $O(n)$
用前缀和预处理一下即可。
Java 代码
class NumArray {
private int[] preSum;
// 预处理阶段
public NumArray(int[] nums) {
int n = nums.length;
// 计算前缀和数组
preSum = new int[n + 1];
preSum[0] = 0;
for (int i = 0; i < n; ++i) {
preSum[i + 1] = preSum[i] + nums[i];
}
}
public int sumRange(int i, int j) {
return preSum[j + 1] - preSum[i];
}
}
算法2
(线段树)
由于数组不可变,所以也可以考虑用线段树来处理。
Java 代码
class NumArray {
private interface Merger<E> { //融合器
E merge(E a, E b);
}
private class SegmentTree<E> {
private E[] tree;
private E[] data;
private Merger<E> merger;
public SegmentTree(E[] arr, Merger<E> merger) {
this.merger = merger;
data = (E[]) new Object[arr.length];
for (int i = 0; i < arr.length; i++) {
data[i] = arr[i];
}
tree = (E[]) new Object[4 * arr.length];
buildSegmentTree(0, 0, data.length - 1);
}
//在treeIndex的位置创建表示区间[l...r]的线段树
private void buildSegmentTree(int treeIndex, int l, int r) {
if(l == r) {
tree[treeIndex] = data[l];
return;
}
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
int mid = l + (r - l) / 2;
buildSegmentTree(leftTreeIndex, l, mid);
buildSegmentTree(rightTreeIndex, mid + 1, r);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
public int getSize() {
return data.length;
}
public E get(int index) {
if(index < 0 || index >= data.length)
throw new IllegalArgumentException("Index is illegal.");
return data[index];
}
//返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
private int leftChild(int index) {
return 2*index + 1;
}
//返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
private int rightChild(int index) {
return 2*index + 2;
}
//返回区间[queryL, queryR]的值
public E query(int queryL, int queryR) {
if(queryL < 0 || queryL >= data.length ||
queryR < 0 || queryR >= data.length || queryL > queryR)
throw new IllegalArgumentException("Index is illegal.");
return query(0, 0, data.length - 1, queryL, queryR);
}
//在treeID为根的线段树中[l...r]的范围,搜索区间[queryL...queryR]的值
private E query(int treeIndex, int l, int r, int queryL, int queryR) {
if(l == queryL && r == queryR)
return tree[treeIndex];
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if(queryL >= mid + 1)
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
else if(queryR <= mid)
return query(leftTreeIndex, l, mid, queryL, queryR);
E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return merger.merge(leftResult, rightResult);
}
@Override
public String toString() {
StringBuilder res = new StringBuilder();
res.append('[');
for (int i = 0; i < tree.length; i++) {
if(tree[i] != null)
res.append(tree[i]);
else
res.append("null");
if(i != tree.length - 1)
res.append(",");
}
res.append("]");
return res.toString();
}
}
private SegmentTree<Integer> segmentTree;
public NumArray(int[] nums) {
if(nums.length > 0) {
Integer[] data = new Integer[nums.length];
for(int i = 0; i< nums.length; i++)
data[i] = nums[i];
segmentTree = new SegmentTree<>(data, (a, b) -> a + b);
}
}
public int sumRange(int i, int j) {
if(segmentTree == null)
throw new IllegalArgumentException("Segment Tree is null");
return segmentTree.query(i, j);
}
}