题目描述
一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
样例
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右
输入: m = 7, n = 3
输出: 28
提示:
1 <= m, n <= 100
- 题目数据保证答案小于等于
2 * 10 ^ 9
算法分析
时间复杂度 $O(n^2)$
C++ 代码
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> f (m, vector<int>(n));
f[0][0] = 1;
for(int i = 0;i < m;i ++)
for(int j = 0;j < n;j ++)
{
if(i == 0 && j == 0) continue;
if(i - 1 >= 0) f[i][j] += f[i - 1][j];
if(j - 1 >= 0) f[i][j] += f[i][j - 1];
}
return f[m - 1][n - 1];
}
};