用了两种方式做,一是用数组模拟队列,二是用queue队列来做
第一个题解,用数组模拟队列
#include <iostream>
#include <cstring>
using namespace std;
typedef pair<int, int> PII;
#define x first
#define y second
const int N = 110;
int n, m;
int g[N][N];
int d[N][N];
PII q[N * N];
int bfs(){
int hh = 0, tt = 0;//hh为对头,tt为队尾
q[0] = {0, 0};//将始点放入队列
memset(d, -1, sizeof d);//两个作用,1:记录是否走过这一点,2:标记当前点到原点的最短距离
d[0][0] = 0;//一开始就是在始点,所以标记走过,同时离始点距离为0,标记为0
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};//偏移量
while (hh <= tt){//如果栈内还有元素
auto t = q[hh ++];//让t表示第一个点,同时将第一个点踢出去,因为用过它了,呸,渣男!
for (int i = 0; i < 4; i ++ ){//让张三走一步
int x = t.x + dx[i], y = t.y + dy[i];//上下左右都试试
if (x >= 0 && x < n && y >= 0 && y < m && d[x][y] == -1 && g[x][y]==0){
//左边四个是看看此位置出界了没有,第五个判断是否走过,最后判断是不是通路
d[x][y] = d[t.x][t.y] + 1;//这点的距离表示离原点的距离
q[++ tt] = {x, y};//将原来的点踢出取,另结新欢,将新娘子娶进来
}
}
}
return d[n - 1][m - 1];//返回出口位置,如果走不到出口,就返回-1了
}
int main(){
cin >> n >> m;
//读入数据
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
cin >> g[i][j];
cout << bfs() << endl;//输出数据
return 0;
}
第二个题解,用queue来解决问题
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
#define x first
#define y second
const int N = 110;
int n, m;
int g[N][N];//记录地图
int d[N][N];//作用1:验证是否走过,作用2表示始点到当前位置的最短距离
int bfs(){
queue<PII> q;
memset(d, -1, sizeof d);//bfs讲求最短,如果走之前走过的路,就不叫最短了,所以用-1来
//标记一下,如果遍历到它的时候,看一下是否为-1,就知道它是否之前走过了
d[0][0] = 0;//初始的位置,走的距离为0
q.push({0, 0});//将队头放进去
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};//进行上下左右的移动
while (q.size()){//直到所有的路都走了,也就停止了
auto t = q.front();
q.pop();
for (int i = 0; i < 4; i ++ ){
int x = t.x + dx[i], y = t.y + dy[i];
if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1){
q.push({x, y});
d[x][y] = d[t.x][t.y] + 1;
}
}
}
return d[n - 1][m - 1];//返回末点的位置
}
int main(){
cin >> n >> m;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
cin >> g[i][j];
cout << bfs() << endl;
return 0;
}
最后,说句我的理解,结合我做的好几道dfs和bfs的题目,感觉他俩的差距就在掉不掉用自身。