'''
SPFA算法,解带负权边的有向图和不带负权边的无向图的单源
最短路问题
'''
from collections import deque
class SPFA:
# start_node 为起始点,edges是边的三元组(节点1, 节点2, 边权重) is_directed表示是否是有向图
def __init__(self, edges, is_directed, max_node_num):
self.edges = edges[::]
self.is_directed = is_directed
self.max_node_num = max_node_num
# 获取最短路径长度的列表[(节点1,长度1), (节点2, 长度2) .....]
def getMinPathLen(self):
return self.getMinInfo()
def getMinInfo(self):
link = {}
dis = [0x7fffffff] * (self.max_node_num+1)
for a, b, w in self.edges:
if not self.is_directed:
# 无向图检查是否有负边
if w < 0:
return None
if a not in link:
link[a] = []
if b not in link:
link[b] = []
link[a].append((b, w))
link[b].append((a, w))
else:
if a not in link:
link[a] = []
link[a].append((b, w))
updated_nodes = deque()
for i in range(1, self.max_node_num+1):
updated_nodes.append(i)
in_que = [1] * (self.max_node_num + 1)
# 进行V次迭代,第V次检查是否是无解情况
iter_times = 0
while iter_times < self.max_node_num:
update_flag = False
# 利用上一轮迭代距离变小的点进行松弛操作
node_num = len(updated_nodes)
for _ in range(node_num):
a = updated_nodes.popleft()
in_que[a] = 0
if a not in link:
continue
for b, w in link[a]:
new_dis = 0x7fffffff if dis[a] == 0x7fffffff else dis[a] + w
if new_dis < dis[b]:
dis[b] = new_dis
update_flag = True
if in_que[b] == 0:
in_que[b] = 1
updated_nodes.append(b)
iter_times += 1
if iter_times == self.max_node_num:
if update_flag:
return None
if not update_flag:
break
return [[node, dis[node]] for node in range(1, self.max_node_num+1)]
n, m = map(int, input().split())
edges = {}
for _ in range(m):
a, b, w = map(int, input().split())
if (a, b) not in edges:
edges[(a, b)] = w
else:
edges[(a, b)] = min(edges[(a, b)], w)
edges = [(a, b, w) for (a, b), w in edges.items()]
flag = False
algo = SPFA(edges, is_directed=True, max_node_num = n)
ans = algo.getMinPathLen()
if ans is None:
flag = True
print('Yes' if flag else 'No')