LeetCode 1. 两数之和
原题链接
简单
作者:
Haiyang
,
2020-08-29 10:35:58
,
所有人可见
,
阅读 672
//number theory
// what is the Ali interview problem with NxN matrix of dots, standing at point (1,1)
// how many points are visible? some dots will block other dots on the same line
//solution is points (x, y) where gcd(x,y)=1 ie x and y are co-primes of each other
// so it's counting phi(1)+phi(2)+phi(3)+...+phi(n)???
#include <iostream>
#include <ctime>
#include <cstring>
using namespace std;
#define N 10000010
int primes[N],cnt;
// brutal force listing out primes; method 1
// complexity n*sqrt(n);
int p1(int n){
for (int i=2; i<=n;i++){
bool flag = false; //flag means not a prime number;
for(int j=2; j*j<=i;j++){
if(i%j==0){flag=true;break;}
}
if(!flag)primes[cnt++]=i;
}
for(int i=0;i<cnt;i++)cout<<primes[i]<<" ";
cout<<endl;
}
//sieve simple method 2 for prime numbers
//complexity n*ln(n) b/c 1+1/2+1/3+...1/n = ln(n)+c0
bool sv[N];
//sieve array to mark composite numbers for 2 multiples; 3 multiples; 5 multiples etc
int p2(int n){
for (int i=2;i<=n;i++){
if(sv[i]) continue;
primes[cnt++]=i;
for(int j=i+i;j<=n;j+=i)
sv[j]=true;
}
//for(int i=0;i<cnt;i++)cout<<primes[i]<<" ";
//cout<<endl;
}
//improved sieve; linear sieve method O(n);
void p3(int n){
for(int i=2; i<=n;i++){
if(!sv[i]) primes[cnt++] = i;
for(int j=0; (j<cnt) && (i*primes[j]<=n);j++){
sv[primes[j]*i]=true; //only done once for one non-prime
//debug line for understanding
//cout<<primes[j]*i<<" for i "<<i<<" and j "<<j<<endl;
if(i%primes[j]==0) break; //pruning
}
}
//output primes
for(int i=0;i<cnt;i++)cout<<primes[i]<<" ";
cout<<endl;
}
//get euler phi number in linear time, with linear sieve
int euler[N];
void p4(int n){
euler[1]=1;
for(int i=2; i<=n;i++){
if(!sv[i]) {
primes[cnt++] = i; // we get a prime number
euler[i]=i-1; //for a prime number p, the phi(p)=p-1;
}
//for composite numbers
for(int j=0; j<cnt&&i*primes[j]<=n;j++){
sv[primes[j]*i]=true; //identifying a non-prime; only done once for a non-prime
if(i%primes[j]==0) {
euler[i*primes[j]]=euler[i]*primes[j];
break;
}
euler[i*primes[j]] = euler[i]*(primes[j]-1);
//3*2, 5*2 5*3, 7*2 7*3 7*5, 9*2 11*2 11*3 11*7 11*5
//cout<<"case special doing euler for i "<<i<< " and j "<<j<<endl;
}
}
//output euler numbers
for(int i=1;i<=n;i++)cout<<"Euler[" <<i<<"] = " <<euler[i]<<endl;
cout<<endl;
}
int main(){
int n;
while(cin>>n){
//p1(n);
int start= clock();
//p2(n);
//cout<<"naive sieve: "<<clock()-start<<endl;
//start= clock();
//p3(n);
//cout<<"linear sieve: "<<clock()-start<<endl;
//get euler phi numbers;
//p3(n);
p4(n);
}
return 0;
}
visible lattice points POJ3090 page 147 of blue book