题目描述
注释版,仅记录。
算法1
C++ 代码
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=20,P=1e9+7;
//调试长代码要先通篇看一遍
struct F{
int s0,s1,s2;
}f[N][10][7][7]; //a是数值大小mod7,b是各位数字之和mod7;
//s0是数的个数,s1是各位数字之和,s2是各位数字的平方和。
int power7[N],power9[N];
int mod(LL x,int y) //取模运算
{
return (x%y + y) %y;
}
void init()
{
for (int i = 0; i <= 9; i ++ )
{
if (i == 7) continue;
auto& v = f[1][i][i % 7][i % 7];
v.s0 ++, v.s1 += i, v.s2 += i * i;
}
LL power = 10; //保证power=10^(i-1);
for (int i = 2; i < N; i ++, power *= 10)
for (int j = 0; j <= 9; j ++ )
{
if (j == 7) continue;
for (int a = 0; a < 7; a ++ )
for (int b = 0; b < 7; b ++ )
for (int k = 0; k <= 9; k ++ )
{
if (k == 7) continue;
auto &v1 = f[i][j][a][b], &v2 = f[i - 1][k][mod(a - j * power, 7)][mod(b - j, 7)];
v1.s0 = mod(v1.s0 + v2.s0, P);
v1.s1 = mod(v1.s1 + v2.s1 + j * (power % P) % P * v2.s0, P);
//greg的推导公式:
// jA1 + jA2 + ... + jAt
// = (j * 10 ^ (i - 1) + A1) + ... // // think of f[i][j]
// = j * 10 ^ (i - 1) * t + (A1 + A2 + ... + At)
v1.s2 = mod(v1.s2 + j * j * (power % P) % P * (power % P) % P * v2.s0 + v2.s2 + 2 * j * power % P * v2.s1, P);
//同样是greg大佬的推导公式:
// (jA1) ^ 2 + (jA2) ^ 2 + ... + (jAt) ^ 2
// = (j * 10 ^ (i - 1) + A1) ^ 2 + ...
// = (j * j * 10 ^ (i - 1) * 10 ^ (i - 1) + 2 * j * 10 ^ (i - 1) * A1 + A1 * A1) + ...
// = (j * j * 10 ^ (i - 1) * 10 ^ (i - 1) * t +
// 2 * j * 10 ^ (i - 1) * (A1 + A2 + ... + At) +
// (A1 * A1 + A2 * A2 + ... + At * At)
}
}
power7[0] = 1; //power mod 7 ,防止超LL;
for (int i = 1; i < N; i ++ ) power7[i] = power7[i - 1] * 10 % 7;
power9[0] = 1; //power mod P ,防止超LL;
for (int i = 1; i < N; i ++ ) power9[i] = power9[i - 1] * 10ll % P;
}
//求mod7!=a,mod7!=b下的和,即满足第2,3个条件的值。
F get(int i, int j, int a, int b)
{
int s0 = 0, s1 = 0, s2 = 0;
for (int x = 0; x < 7; x ++ )
for (int y = 0; y < 7; y ++ )
if (x != a && y != b)
{
auto v = f[i][j][x][y];
s0 = (s0 + v.s0) % P;
s1 = (s1 + v.s1) % P;
s2 = (s2 + v.s2) % P;
}
return {s0, s1, s2};
}
int dp(LL n)
{
if (!n) return 0;
LL backup_n = n % P;
vector<int> nums;
while (n) nums.push_back(n % 10), n /= 10;
int res = 0;
LL last_a = 0, last_b = 0;
for (int i = nums.size() - 1; i >= 0; i -- )
{
int x = nums[i];
for (int j = 0; j < x; j ++ )
{
if (j == 7) continue;
//-last_a这种在余数运算中很常见,记录全部数位mod7为0,前半部分mod7为la时,后面的余数是多少。
int a = mod(-last_a * power7[i + 1], 7);
int b = mod(-last_b, 7);
auto v = get(i + 1, j, a, b);
res = mod(
res +
(last_a % P) * (last_a % P) % P * power9[i + 1] % P * power9[i + 1] % P * v.s0 % P +
v.s2 +
2 * last_a % P * power9[i + 1] % P * v.s1,
P);
}
if (x == 7) break;
last_a = last_a * 10 + x;
last_b += x;
if (!i && last_a % 7 && last_b % 7) res = (res + backup_n * backup_n) % P;
}
return res;
}
int main()
{
int T;
cin>>T;
init();
while(T--)
{
LL l,r;
cin>>l>>r;
cout<<mod(dp(r)-dp(l-1),P)<<endl;
}
return 0;
}