题目描述
给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
初始状态下,所有 next 指针都被设置为 NULL。
样例
输入:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":null,"right":null,"val":4},"next":null,"right":{"$id":"4","left":null,"next":null,"right":null,"val":5},"val":2},"next":null,"right":{"$id":"5","left":{"$id":"6","left":null,"next":null,"right":null,"val":6},"next":null,"right":{"$id":"7","left":null,"next":null,"right":null,"val":7},"val":3},"val":1}
输出:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":{"$id":"4","left":null,"next":{"$id":"5","left":null,"next":{"$id":"6","left":null,"next":null,"right":null,"val":7},"right":null,"val":6},"right":null,"val":5},"right":null,"val":4},"next":{"$id":"7","left":{"$ref":"5"},"next":null,"right":{"$ref":"6"},"val":3},"right":{"$ref":"4"},"val":2},"next":null,"right":{"$ref":"7"},"val":1}
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。
算法1
时间复杂度 $O(n)$
根据题设条件,该二叉树为完美二叉树除叶子结点外所有节点存在左右子树,且叶子结点位于同一层。
利用next指针,节省层序遍历队列$O(n)$空间复杂度的消耗。
遍历每一层所有节点,当前层最左节点cur,当前遍历节点为p,
(1)若p.left不为空,则必然p.right存在,即p.left.next = p.right;
(2)若p.next不为空,则p.next必然存在左右子树,即p.right.next = p.next.left;
(3)若p.next为空,则p.right.next = null;
(4)此时二叉树当前层遍历完成,遍历下一层,起始节点为当前层最左节点的左子节点,即cur = cur.left;
(5)当cur.left为空,说明当前层为叶子结点,结束循环。
所有节点共被遍历一次,因此时间复杂度$O(n)$
Java 代码
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public Node connect(Node root) {
if (root == null) return null;
Node cur = root;
while (cur.left != null){
for (Node p = cur; p != null;p = p.next){
p.left.next = p.right;
if (p.next != null)
p.right.next = p.next.left;
else
p.right.next = null;
}
cur = cur.left;
}
return root;
}
}