题目描述
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
样例
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
算法1
(矩阵型DP) $O(m*n)$
f[i][j]=min(f[i-1][j],f[i][j-1])+grid[i][j];
初始化:f[0][0]=grid[0][0];
i:1->m f[i][0]=f[i-1][0]+grid[i][0];
j:1->n f[0][j]=f[0][j-1]+grid[0][j-1];
C++ 代码
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
if(grid.size()==0||grid[0].size()==0)
return 0;
int m=grid.size(),n=grid[0].size();
vector<vector<int>> f(m,vector<int>(n,0));
f[0][0]=grid[0][0];
for(int i=1;i<m;i++){
f[i][0]=f[i-1][0]+grid[i][0];
}
for(int j=1;j<n;j++){
f[0][j]=f[0][j-1]+grid[0][j];
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
f[i][j]=min(f[i-1][j],f[i][j-1])+grid[i][j];
}
}
return f[m-1][n-1];
}
};