Day 7
题目描述
栋栋最近开了一家餐饮连锁店,提供外卖服务。
随着连锁店越来越多,怎么合理的给客户送餐成为了一个急需解决的问题。
栋栋的连锁店所在的区域可以看成是一个 $n×n$的方格图(如下图所示),方格的格点上的位置上可能包含栋栋的分店(绿色标注)或者客户(蓝色标注),有一些格点是不能经过的(红色标注)。
方格图中的线表示可以行走的道路,相邻两个格点的距离为 $1$。
栋栋要送餐必须走可以行走的道路,而且不能经过红色标注的点。
送餐的主要成本体现在路上所花的时间,每一份餐每走一个单位的距离需要花费 $1$ 块钱。
每个客户的需求都可以由栋栋的任意分店配送,每个分店没有配送总量的限制。
现在你得到了栋栋的客户的需求,请问在最优的送餐方式下,送这些餐需要花费多大的成本。
输入格式
输入的第一行包含四个整数 $n,m,k,d$,分别表示方格图的大小、栋栋的分店数量、客户的数量,以及不能经过的点的数量。
接下来 $m$ 行,每行两个整数 $x_i,y_i$
,表示栋栋的一个分店在方格图中的横坐标和纵坐标。
接下来 $k$ 行,每行三个整数 $x_i,y_i,c_i$,分别表示每个客户在方格图中的横坐标、纵坐标和订餐的量。(注意,可能有多个客户在方格图中的同一个位置)
接下来 $d$ 行,每行两个整数,分别表示每个不能经过的点的横坐标和纵坐标。
输出格式
输出一个整数,表示最优送餐方式下所需要花费的成本。
数据范围
前 $30%$ 的评测用例满足:$1≤n≤20$。
前 $60%$ 的评测用例满足:$1≤n≤100$。
所有评测用例都满足:$1≤n≤1000,1≤m,k,d≤n^2,1≤x_i,y_i≤n$。
可能有多个客户在同一个格点上。
每个客户的订餐量不超过 $1000$,每个客户所需要的餐都能被送到。
输入样例:
10 2 3 3
1 1
8 8
1 5 1
2 3 3
6 7 2
1 2
2 2
6 8
输出样例:
29
题目分析
$bfs$ 找到到各点的最短路,计算费用即可
C++ 代码
注: 建议用scanf
读取,不然会$TLE$,不然就和我一样关闭流同步
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
typedef pair<int, int> PII;
int dist[N][N] , g[N][N];
pair<PII , int> cus[N * N];
bool st[N][N];
int n , m , k, d;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int main()
{
ios::sync_with_stdio(false);
cin.tie(0) , cout.tie(0);
cin >> n >> m >> k >> d;
queue<pair<int , PII>> q;
while (m -- )
{
int x , y;
cin >> x >> y;
q.push({0 , {x ,y}});
st[x][y] = true;
}
for(int i = 0 ; i < k ; i ++)
{
int x , y , c;
cin >> x >> y >> c;
cus[i] = {{x , y} , c};
}
while(d --)
{
int x , y;
cin >> x >> y;
g[x][y] = 1;
}
while(q.size())
{
auto t = q.front();
q.pop();
int dis = t.first , x = t.second.first , y = t.second.second;
for(int i = 0 ; i < 4 ; i ++)
{
int tx = x + dx[i] , ty = y + dy[i];
if(tx <= 0 || ty <= 0 || tx > n || ty > n || g[tx][ty]) continue;
if(st[tx][ty]) continue;
st[tx][ty] = true;
dist[tx][ty] = dis + 1;
q.push({dis + 1 , {tx , ty}});
}
}
long long res = 0;
for(int i = 0 ; i < k ; i ++)
{
// cout << dist[cus[i].first.first][cus[i].first.second] << '\n';
res += dist[cus[i].first.first][cus[i].first.second] * cus[i].second;
}
cout << res << '\n';
return 0;
}