Day 11
题目描述
题目很长,就不赘述了(主要是懒得写)
题目解析
Gauss 消元
题目的提示很明显,将元素守恒作为建立等式的基础。只要满足每一行元素守恒,即$x_1 + x_2 + ··· + x_n = 0$即可
元素个数为$m$,物质个数为$n$,增广矩阵的大下为$m * (n + 1)$,Gauss消元时间复杂度为$O(m n^2)$ 数据量很小
要注意的是,这里有个特解,比如$x_1 = x_2 = x_3 = ··· = x_n = 0$一定是成立的,但是在题干描述中并不合法,所以在$rankA = n$时还是要求出具体的解,判断一下特解
C++代码
#include <bits/stdc++.h>
using namespace std;
const int N = 110;
const double eps = 1e-10;
int T;
int n;
map<string , int> mp;
int idx = 0;
double g[N][N];
void process_str(int k , string x)
{
int i = 0;
while(i < x.size())
{
string s = "";
while(i < x.size() && !isdigit(x[i])) s += x[i ++];
int amount = 0;
while(i < x.size() && isdigit(x[i])) amount = amount * 10 + x[i ++] - '0';
if(!mp.count(s)) mp[s] = idx ++;
g[mp[s]][k] = amount;
}
}
int gauss()
{
int c, r;
for (c = 0, r = 0; c < n; c ++ )
{
int t = r;
for (int i = r; i < idx; i ++ )
if (fabs(g[i][c]) > fabs(g[t][c]))
t = i;
if (fabs(g[t][c]) < eps) continue;
for (int i = c; i <= n; i ++ ) swap(g[t][i], g[r][i]);
for (int i = n; i >= c; i -- ) g[r][i] /= g[r][c];
for (int i = r + 1; i < idx; i ++ )
if (fabs(g[i][c]) > eps)
for (int j = n; j >= c; j -- )
g[i][j] -= g[r][j] * g[i][c];
r ++ ;
}
if (r < n)
{
for (int i = r; i < idx; i ++ )
if (fabs(g[i][n]) > eps)
return 0; // 无解
return 1;
}
for (int i = idx - 1; i >= 0; i -- )
for (int j = i + 1; j < n; j ++ )
g[i][n] -= g[i][j] * g[j][n];
bool f = true;
for(int i = 0 ; i < idx ; i ++)
f &= (g[i][n] < eps);
if(f) return 0;
return 1;
}
void solve()
{
memset(g , 0 , sizeof g);
mp.clear();
idx = 0;
cin >> n;
for(int i = 0 ; i < n ; i ++)
{
string x;
cin >> x;
process_str(i , x);
}
if(gauss()) cout << "Y\n";
else cout << "N\n";
}
int main()
{
cin >> T;
while(T --)
{
solve();
}
return 0;
}