算法分析
原问题可以转化为
求一个 $n$ 个点 $m$ 条边的带标号无向图有 $k$ 个连通块。我们希望添加 $k-1$ 条边使得整个图连通。求方案数。
假设每个连通块的点数为 $c_i$,那么答案就是 $\displaystyle n^{k-2}\prod_{i=1}^k c_i$ 。证明见 oi-wiki
代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using ll = long long;
int mod;
//const int mod = 998244353;
//const int mod = 1000000007;
struct mint {
ll x;
mint(ll x=0):x((x%mod+mod)%mod) {}
mint operator-() const {
return mint(-x);
}
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod-a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) {
(x *= a.x) %= mod;
return *this;
}
mint operator+(const mint a) const {
return mint(*this) += a;
}
mint operator-(const mint a) const {
return mint(*this) -= a;
}
mint operator*(const mint a) const {
return mint(*this) *= a;
}
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t>>1);
a *= a;
if (t&1) a *= *this;
return a;
}
// for prime mod
mint inv() const {
return pow(mod-2);
}
mint& operator/=(const mint a) {
return *this *= a.inv();
}
mint operator/(const mint a) const {
return mint(*this) /= a;
}
};
istream& operator>>(istream& is, mint& a) {
return is >> a.x;
}
ostream& operator<<(ostream& os, const mint& a) {
return os << a.x;
}
struct UnionFind {
vector<int> d;
UnionFind(int n = 0): d(n, -1) {}
int find(int x) {
if (d[x] < 0) return x;
return d[x] = find(d[x]);
}
bool unite(int x, int y) {
x = find(x); y = find(y);
if (x == y) return false;
if (d[x] > d[y]) swap(x, y);
d[x] += d[y];
d[y] = x;
return true;
}
bool same(int x, int y) {
return find(x) == find(y);
}
int size(int x) {
return -d[find(x)];
}
};
int main() {
int n, m;
cin >> n >> m >> mod;
UnionFind uf(n);
rep(i, m) {
int a, b;
cin >> a >> b;
--a; --b;
uf.unite(a, b);
}
vector<int> c;
rep(i, n) if (uf.find(i) == i) {
c.push_back(uf.size(i));
}
int k = c.size();
mint ans = 1;
if (k > 1) {
ans *= mint(n).pow(k-2);
rep(i, k) ans *= c[i];
}
cout << ans << '\n';
return 0;
}