新年好
从自己家开始,顺序任意,能去五个亲戚家,可以从亲戚家去到另外的亲戚家,于是这启发我们把每个亲戚和自己到全图其他点的最短路处理出来。
这乍一看是多源汇最短路,但是我们发现Floyd算法是O(N3)的,在这题的条件下直接炸了 但是,只有一个自己加上五个亲戚,如果做6次Dijkstra,每次Dijkstra是O(mlogn)的,所以我们可以用Dijkstra。
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 50010, M = 200010, INF = 0x3f3f3f3f;
int n, m;
int h[N], e[M], w[M], ne[M], idx;
int q[N], dist[6][N];
int source[6];
bool st[N];
void add(int a, int b, int c) {
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
void dijkstra(int start, int dist[]) {
memset(dist, 0x3f, N * 4);
dist[start] = 0;
memset(st, 0, sizeof st);
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, start});
while (heap.size()) {
auto t = heap.top();
heap.pop();
int ver = t.second;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; ~i; i = ne[i]) {
int j = e[i];
if (dist[j] > dist[ver] + w[i]) {
dist[j] = dist[ver] + w[i];
heap.push({dist[j], j});
}
}
}
}
int dfs(int u, int start, int distance) {
if (u > 5) return distance;
int res = INF;
for (int i = 1; i <= 5; i ++ )
if (!st[i]) {
int next = source[i];
st[i] = true;
res = min(res, dfs(u + 1, i, distance + dist[start][next]));
st[i] = false;
}
return res;
}
int main() {
scanf("%d%d", &n, &m);
source[0] = 1;
for (int i = 1; i <= 5; i ++ ) scanf("%d", &source[i]);
memset(h, -1, sizeof h);
while (m -- ) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c), add(b, a, c);
}
for (int i = 0; i < 6; i ++ ) dijkstra(source[i], dist[i]);
memset(st, 0, sizeof st);
printf("%d\n", dfs(1, 0, 0));
return 0;
}